1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
#include <iostream>
#include <algorithm>
#include <vector>
using std::vector;
typedef vector<vector<int> > Matrix;
const int INF = 1e9;
Matrix read_data() {
int vertex_count, edge_count;
std::cin >> vertex_count >> edge_count;
Matrix graph(vertex_count, vector<int>(vertex_count, INF));
for (int i = 0; i < edge_count; ++i) {
int from, to, weight;
std::cin >> from >> to >> weight;
--from, --to;
graph[from][to] = graph[to][from] = weight;
}
return graph;
}
std::pair<int, vector<int> > optimal_path_(const Matrix& graph) {
// This solution tries all the possible sequences of stops.
// It is too slow to pass the problem.
// Implement a more efficient algorithm here.
size_t n = graph.size();
vector<int> p(n);
for (size_t i = 0; i < n; ++i)
p[i] = i;
vector<int> best_path;
int best_ans = INF;
do {
int cur_sum = 0;
bool ok = true;
for (size_t i = 1; i < n && ok; ++i)
if (graph[p[i - 1]][p[i]] == INF)
ok = false;
else
cur_sum += graph[p[i - 1]][p[i]];
if (graph[p.back()][p[0]] == INF)
ok = false;
else
cur_sum += graph[p.back()][p[0]];
if (!ok)
continue;
if (cur_sum < best_ans) {
best_ans = cur_sum;
best_path = p;
}
} while (std::next_permutation(p.begin(), p.end()));
if (best_ans == INF)
best_ans = -1;
for (size_t i = 0; i < best_path.size(); ++i)
++best_path[i];
return std::make_pair(best_ans, best_path);
}
struct Memory {
int w; int c; int r;
};
std::pair<int, vector<int> > optimal_path(const Matrix& graph) {
int n = graph.size(); // edges
int m = (1 << n); // max combinations
vector<vector<Memory>> cost(m, vector<Memory>(n, {INF, 0, 0}));
cost[0][0] = {0, -1, -1};
// C(S, i) be the cost of the minimum cost path visiting each vertex in set S exactly once, starting at 1 and ending at i.
// If size of S is 2, then S must be {1, i},
// C(S, i) = dist(1, i)
for (int i = 1; i < n; i++) {
int sid = (1 << i) + 1;
int v = graph[0][i];
if (v != INF) {
cost[sid][i] = {v, 0, 0};
// std::cout << " set : ["<< sid << "][" << i << "] = " << cost[sid][i].w << std::endl;
}
}
// Else if size of S is greater than 2.
// C(S, i) = min { C(S-{i}, j) + dis(j, i)} where j belongs to S, j != i and j != 1.
// Note that 1 must be present in every subset S, so 1 less bit:
m = (1 << (n - 1));
for (int s = 2; s <= n; s++) {
// std::cout << " size : " << s << std::endl;
// loop from 0 ..m, with n=5, s=2 => 110, 101, 011
for (int b = 0; b < m; b++) {
int nb = 0;
int v = b;
while(v) {
nb += (v & 1); // check last bit
v >>= 1; // shift
}
if (nb != s) {
continue;
}
// shift them and add 1 -> 1100, 1010, 0110
int bits = (b << 1);
// std::cout << " bits : " << bits << std::endl;
for (int i = 1; i < n; i++) { // not 0 it's our start
if (bits & (1 << i)) {
for (int j = 0; j < n; j++) {
if (j != i && (bits & (1 << j))) { // do not stay on the same vertex
int k = bits + 1;
int nk = (bits ^ (1 << i)) + 1;
// std::cout << " try : " << nk << "->" << j << "->" << i <<std::endl;
int c = cost[nk][j].w + graph[j][i];
if (c < cost[k][i].w) {
cost[k][i] = {c, nk, j};
// std::cout << " set : ["<< k << "][" << i << "] = " << c << std::endl;
}
}
}
}
}
}
}
// std::cout << std::endl;
// for (auto &row : cost) {
// for(auto &m : row) {
// std::cout << " " << (m.w == INF ? 0 : m.w) << " (" << m.c << ";" << m.r << ") ";
// }
// std::cout << std::endl;
// }
// std::cout << std::endl;
int best = INF;
vector<int> path;
auto &last_row = cost[(1 << n) - 1];
Memory& last_m = cost[0][0];
int j;
for (int i = 0; i < cost[0].size(); i++) {
auto &cell = last_row[i];
int c = cell.w + graph[i][0];
if (c < best) {
j = i;
best = c;
last_m = cell;
}
}
if (best == INF) {
best = -1;
} else {
path.push_back(j + 1);
while(last_m.r > 0) {
// std::cout << last_m.w << " " << last_m.c << " " << last_m.r << std::endl;
path.push_back(last_m.r + 1);
last_m = cost[last_m.c][last_m.r];
}
path.push_back(1);
}
std::reverse(std::begin(path), std::end(path));
return std::make_pair(best, path);
}
void print_answer(const std::pair<int, vector<int> >& answer) {
std::cout << answer.first << "\n";
if (answer.first == -1)
return;
const vector<int>& path = answer.second;
for (size_t i = 0; i < path.size(); ++i)
std::cout << path[i] << " ";
std::cout << "\n";
}
int main() {
print_answer(optimal_path(read_data()));
return 0;
}
|