summaryrefslogtreecommitdiffstats
path: root/05-advanced_algorithms_and_complexity/04-np-completeness/03-school_bus/school_bus.cpp
diff options
context:
space:
mode:
authorJérémy Zurcher <jeremy@asynk.ch>2022-03-29 10:29:56 +0200
committerJérémy Zurcher <jeremy@asynk.ch>2022-03-29 10:29:56 +0200
commit9d34d783c6dc1bda8f0aedfaf19485bbda67938a (patch)
tree99ebae5cfee273c08dcf0197b584df4f83e92bfc /05-advanced_algorithms_and_complexity/04-np-completeness/03-school_bus/school_bus.cpp
parent0cb72c21cff158fc85a2055d056bdcbb45b1eb21 (diff)
downloadcoursera-algos.zip
coursera-algos.tar.gz
Algorithms : complete 05-advanced_algorithms_and_complexity 04-np-completenessalgos
Diffstat (limited to '05-advanced_algorithms_and_complexity/04-np-completeness/03-school_bus/school_bus.cpp')
-rw-r--r--05-advanced_algorithms_and_complexity/04-np-completeness/03-school_bus/school_bus.cpp103
1 files changed, 102 insertions, 1 deletions
diff --git a/05-advanced_algorithms_and_complexity/04-np-completeness/03-school_bus/school_bus.cpp b/05-advanced_algorithms_and_complexity/04-np-completeness/03-school_bus/school_bus.cpp
index 26bd942..14848e0 100644
--- a/05-advanced_algorithms_and_complexity/04-np-completeness/03-school_bus/school_bus.cpp
+++ b/05-advanced_algorithms_and_complexity/04-np-completeness/03-school_bus/school_bus.cpp
@@ -20,7 +20,7 @@ Matrix read_data() {
return graph;
}
-std::pair<int, vector<int> > optimal_path(const Matrix& graph) {
+std::pair<int, vector<int> > optimal_path_(const Matrix& graph) {
// This solution tries all the possible sequences of stops.
// It is too slow to pass the problem.
// Implement a more efficient algorithm here.
@@ -60,6 +60,107 @@ std::pair<int, vector<int> > optimal_path(const Matrix& graph) {
return std::make_pair(best_ans, best_path);
}
+struct Memory {
+ int w; int c; int r;
+};
+
+std::pair<int, vector<int> > optimal_path(const Matrix& graph) {
+
+ int n = graph.size(); // edges
+ int m = (1 << n); // max combinations
+ vector<vector<Memory>> cost(m, vector<Memory>(n, {INF, 0, 0}));
+ cost[0][0] = {0, -1, -1};
+
+ // C(S, i) be the cost of the minimum cost path visiting each vertex in set S exactly once, starting at 1 and ending at i.
+ // If size of S is 2, then S must be {1, i},
+ // C(S, i) = dist(1, i)
+ for (int i = 1; i < n; i++) {
+ int sid = (1 << i) + 1;
+ int v = graph[0][i];
+ if (v != INF) {
+ cost[sid][i] = {v, 0, 0};
+ // std::cout << " set : ["<< sid << "][" << i << "] = " << cost[sid][i].w << std::endl;
+ }
+ }
+
+ // Else if size of S is greater than 2.
+ // C(S, i) = min { C(S-{i}, j) + dis(j, i)} where j belongs to S, j != i and j != 1.
+ // Note that 1 must be present in every subset S, so 1 less bit:
+ m = (1 << (n - 1));
+ for (int s = 2; s <= n; s++) {
+ // std::cout << " size : " << s << std::endl;
+ // loop from 0 ..m, with n=5, s=2 => 110, 101, 011
+ for (int b = 0; b < m; b++) {
+ int nb = 0;
+ int v = b;
+ while(v) {
+ nb += (v & 1); // check last bit
+ v >>= 1; // shift
+ }
+ if (nb != s) {
+ continue;
+ }
+ // shift them and add 1 -> 1100, 1010, 0110
+ int bits = (b << 1);
+ // std::cout << " bits : " << bits << std::endl;
+ for (int i = 1; i < n; i++) { // not 0 it's our start
+ if (bits & (1 << i)) {
+ for (int j = 0; j < n; j++) {
+ if (j != i && (bits & (1 << j))) { // do not stay on the same vertex
+ int k = bits + 1;
+ int nk = (bits ^ (1 << i)) + 1;
+ // std::cout << " try : " << nk << "->" << j << "->" << i <<std::endl;
+ int c = cost[nk][j].w + graph[j][i];
+ if (c < cost[k][i].w) {
+ cost[k][i] = {c, nk, j};
+ // std::cout << " set : ["<< k << "][" << i << "] = " << c << std::endl;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ // std::cout << std::endl;
+ // for (auto &row : cost) {
+ // for(auto &m : row) {
+ // std::cout << " " << (m.w == INF ? 0 : m.w) << " (" << m.c << ";" << m.r << ") ";
+ // }
+ // std::cout << std::endl;
+ // }
+ // std::cout << std::endl;
+
+ int best = INF;
+ vector<int> path;
+
+ auto &last_row = cost[(1 << n) - 1];
+ Memory& last_m = cost[0][0];
+ int j;
+ for (int i = 0; i < cost[0].size(); i++) {
+ auto &cell = last_row[i];
+ int c = cell.w + graph[i][0];
+ if (c < best) {
+ j = i;
+ best = c;
+ last_m = cell;
+ }
+ }
+ if (best == INF) {
+ best = -1;
+ } else {
+ path.push_back(j + 1);
+ while(last_m.r > 0) {
+ // std::cout << last_m.w << " " << last_m.c << " " << last_m.r << std::endl;
+ path.push_back(last_m.r + 1);
+ last_m = cost[last_m.c][last_m.r];
+ }
+ path.push_back(1);
+ }
+ std::reverse(std::begin(path), std::end(path));
+
+ return std::make_pair(best, path);
+}
+
void print_answer(const std::pair<int, vector<int> >& answer) {
std::cout << answer.first << "\n";
if (answer.first == -1)