1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
|
#warning-ignore-all:integer_division
extends Node
class_name HexBoard, "res://godot/HexMap.png"
enum Orientation { E=1, NE=2, N=4, NW=8, W=16, SW=32, S=64, SE=128 }
const IMAX : int = 9999999999
const DEGREE_ADJ : int = 2
var bt : Vector2 # bottom corner
var cr : Vector2 # column, row
var v : bool # hex have a vertical edje
var s : float # hex side length
var w : float # hex width between 2 parallel sides
var h : float # hex height from the bottom of the middle rectangle to the top of the upper edje
var dw : float # half width
var dh : float # half height (from the top ef tho middle rectangle to the top of the upper edje)
var m : float # dh / dw
var im : float # dw / dh
var tl : int # num of hexes in 2 consecutives rows
var tile_factory_fct : FuncRef
var angles : Dictionary
var adjacents : Array
var search_count : int
var stack : Array
func _init(cols : int, rows : int, side : float, v0 : Vector2, vertical : bool, fct : FuncRef) -> void:
tile_factory_fct = fct
v = vertical
s = side
w = s * 1.73205
dw = w / 2.0
dh = s / 2.0
h = s + dh
m = dh / dw
im = dw / dh
if v:
bt = v0
cr = Vector2(cols, rows)
else:
bt = v0
cr = Vector2(rows, cols)
tl = (2 * int(cr.x) - 1)
search_count = 0
angles = {}
if v:
# origin [top-left] East is at 0°, degrees grows clockwise
angles[Orientation.E] = 0
angles[Orientation.SE] = 60
angles[Orientation.SW] = 120
angles[Orientation.W] = 180
angles[Orientation.NW] = 240
angles[Orientation.NE] = 300
else:
angles[Orientation.SE] = 30
angles[Orientation.S] = 90
angles[Orientation.SW] = 150
angles[Orientation.NW] = 210
angles[Orientation.N] = 270
angles[Orientation.NE] = 330
# the number of Tile
func size() -> int:
return int(cr.y) / 2 * tl + int(cr.y) % 2 * int(cr.x)
# fetch a Tile given it's col;row coordinates
func get_tile(coords : Vector2) -> Tile:
return tile_factory_fct.call_func(coords, key(coords))
# Orientation to degrees
func to_degrees(o : int) -> int:
return angles.get(o, -1)
# convert the given angle between 2 adjacent Tiles into an Orientation
func to_orientation(a : float) -> int:
for k in angles.keys():
if angles[k] == a:
return k
return -1
# compute the angle between 2 adjacent Tiles
func angle(from : Tile, to : Tile) -> int:
var a : float = rad2deg((to.position - from.position).angle()) + DEGREE_ADJ
if a < 0: a += 360
return int(a / 10) * 10
# return the opposite of a given Orientation
func opposite(o : int) -> int:
if o <= Orientation.NW: return o << 4
return o >> 4
# return the Orientation given to distant Tiles
# Orientation is combined in case of diagonals
func distant_orientation(from : Tile, to : Tile) -> int:
var a : float = rad2deg((to.position - from.position).angle())
if a < 0: a += 360
a = int(a * 10) / 10.0
for k in angles.keys():
var z : int = angles[k]
if a >= (z + 30 - DEGREE_ADJ) and a <= (z + 30 + DEGREE_ADJ):
# diagonal
var p : int = k >> 1
if p == 0: p = Orientation.SE
if not angles.has(p): return k | p >> 1 # v : N S and not v : W E
else: return (k | p)
elif (z == 30 and (a < DEGREE_ADJ or a > 360 - DEGREE_ADJ)):
return Orientation.NE | Orientation.SE
elif a >= (z - 30) and a <= (z + 30):
return k
if angles.has(Orientation.E) and a > 330 and a <= 360:
return Orientation.E
return -1
# return the opposite of a possibly combined given Orientation
func distant_opposite(o : int) -> int:
var r : int = 0
for k in angles.keys():
if (k & o) == k:
r |= opposite(k)
return r
# return the key of a given col;row coordinate
func key(coords : Vector2) -> int:
if not is_on_map(coords): return -1
if v: return _key(int(coords.x), int(coords.y))
else: return _key(int(coords.y), int(coords.x))
func _key(x : int, y : int) -> int:
var n : int = y / 2
var i : int = x - n + n * tl
if (y % 2) != 0:
i += (int(cr.x) - 1)
return i
# build the 6 adjacent Tiles of a Tile given by it's col;row coordinates
func build_adjacents(coords : Vector2) -> Array:
adjacents.clear()
coords.x += 1
adjacents.append(get_tile(coords))
coords.y += 1
adjacents.append(get_tile(coords))
coords.x -= 1
adjacents.append(get_tile(coords))
coords.x -= 1
coords.y -= 1
adjacents.append(get_tile(coords))
coords.y -= 1
adjacents.append(get_tile(coords))
coords.x += 1
adjacents.append(get_tile(coords))
return adjacents
# return true if the Tile is on the map
func is_on_map(coords : Vector2) -> bool:
if v: return _is_on_map(int(coords.x), int(coords.y))
else: return _is_on_map(int(coords.y), int(coords.x))
func _is_on_map(x : int, y : int) -> bool:
if (y < 0) || (y >= int(cr.y)): return false
if (x < ((y + 1) / 2)) || (x >= (int(cr.x) + (y / 2))): return false
return true
# compute the center of a Tile given by it's col;row coordinates
func center_of(coords : Vector2) -> Vector2:
if v: return Vector2(bt.x + dw + (coords.x * w) - (coords.y * dw), bt.y + dh + (coords.y * h))
else: return Vector2(bt.y + dh + (coords.x * h), bt.x + dw + (coords.y * w) - (coords.x * dw))
# compute the col;row coordinates of a Tile given it's real coordinates
func to_map(r : Vector2) -> Vector2:
if v: return _to_map(r.x, r.y, false)
else: return _to_map(r.y, r.x, true)
func _to_map(x : float, y : float, swap : bool) -> Vector2:
var col : int = -1
var row : int = -1
# compute row
var dy : float = y - bt.y
row = int(dy / h)
if dy < 0:
row -= 1
# compute col
var dx : float = x - bt.x + (row * dw);
col = int(dx / w)
if dx < 0:
col -= 1
# upper rectangle or hex body
if dy > ((row * h) + s):
dy -= ((row * h) + s)
dx -= (col * w)
# upper left or right rectangle
if dx < dw:
if dy > (dx * m):
# upper left hex
row += 1
else:
if dy > ((w - dx) * m):
# upper right hex
row += 1
col += 1
if swap: return Vector2(row, col)
else: return Vector2(col, row)
# compute the distance between 2 Tiles given by their col;row coordinates
func distance(p0 : Vector2, p1 : Vector2, euclidean : bool = true) -> float:
var dx : int = int(p1.x - p0.x)
var dy : int = int(p1.y - p0.y)
if euclidean:
if dx == 0: return abs(dy)
elif dy == 0 || dx == dy: return abs(dx)
var fdx : float = dx - dy / 2;
var fdy : float = dy * 0.86602
return sqrt((fdx * fdx) + (fdy * fdy))
else:
dx = int(abs(dx))
dy = int(abs(dy))
var dz : float = abs(p1.x - p0.x - p1.y + p0.y)
if dx > dy:
if dx > dz: return float(dx)
else:
if dy > dz: return float(dy)
return dz
# http://zvold.blogspot.com/2010/01/bresenhams-line-drawing-algorithm-on_26.html
# http://zvold.blogspot.com/2010/02/line-of-sight-on-hexagonal-grid.html
# compute as an Array, the line of sight between 2 Tiles given by their col;row coordinates
# return the point after which the line of sight is blocked
func line_of_sight(p0 : Vector2, p1 : Vector2, tiles : Array) -> Vector2:
tiles.clear()
# orthogonal projection
var ox0 : float = p0.x - (p0.y + 1) / 2
var ox1 : float = p1.x - (p1.y + 1) / 2
var dy : int = int(p1.y) - int(p0.y)
var dx : float = ox1 - ox0
# quadrant I && III
var q13 : bool = (dx >= 0 && dy >= 0) || (dx < 0 && dy < 0)
# is positive
var xs : int = 1
var ys : int = 1
if dx < 0: xs = -1
if dy < 0: ys = -1
# dx counts half width
dy = int(abs(dy))
dx = abs(2 * dx)
var dx3 : int = int(3 * dx)
var dy3 : int = 3 * dy
# check for diagonals
if dx == 0 || dx == dy3:
return _diagonal_los(p0, p1, (dx == 0), q13, tiles)
# angle is less than 45°
var flat : bool = dx > dy3
var x : int = int(p0.x)
var y : int = int(p0.y);
var e : int = int(-2 * dx)
var from : Tile = get_tile(p0)
var to : Tile = get_tile(p1)
var d : float = distance(p0, p1)
tiles.append(from)
from.blocked = false
var ret : Vector2 = Vector2(-1, -1)
var contact : bool = false
var los_blocked : bool = false
while (x != p1.x) or (y != p1.y):
if e > 0:
# quadrant I : up left
e -= (dy3 + dx3)
y += ys
if not q13: x -= xs
else:
e += dy3
if (e > -dx) or (not flat && (e == -dx)):
# quadrant I : up right
e -= dx3
y += ys
if q13: x += xs
elif e < -dx3:
# quadrant I : down right
e += dx3
y -= ys
if not q13: x += xs
else:
# quadrant I : right
e += dy3
x += xs
var q : Vector2 = Vector2(x, y)
var t : Tile = get_tile(q)
if los_blocked and not contact:
var prev : Tile = tiles[tiles.size() - 1]
var o : int = to_orientation(angle(prev, t))
ret = _compute_contact(from.position, to.position, prev.position, o)
contact = true
tiles.append(t)
t.blocked = los_blocked
los_blocked = los_blocked or t.block_los(from, to, d, distance(p0, q))
return ret
func _diagonal_los(p0 : Vector2, p1 : Vector2, flat : bool, q13 : bool, tiles : Array) -> Vector2:
var dy : int = 1 if p1.y > p0.y else -1
var dx : int = 1 if p1.x > p0.x else -1
var x : int = int(p0.x)
var y : int = int(p0.y)
var from : Tile = get_tile(p0);
var to : Tile = get_tile(p1);
var d : float = distance(p0, p1)
tiles.append(from);
from.blocked = false;
var ret : Vector2 = Vector2(-1, -1)
var blocked : int = 0
var contact : bool = false
var los_blocked : bool = false
while (x != p1.x) or (y != p1.y):
var idx : int = 4
if flat: y += dy # up left
else: x += dx # right
var q : Vector2 = Vector2(x, y)
var t : Tile = get_tile(q)
if t.on_map:
tiles.append(t)
t.blocked = los_blocked
if t.block_los(from, to, d, distance(p0, q)):
blocked |= 0x01
else:
blocked |= 0x01
idx = 3
if flat: x += dx # up right
else:
y += dy # up right
if not q13: x -= dx
q = Vector2(x, y)
t = get_tile(q)
if t.on_map:
tiles.append(t)
t.blocked = los_blocked
if t.block_los(from, to, d, distance(p0, q)):
blocked |= 0x02
else:
blocked |= 0x02
idx = 3
if flat: y += dy # up
else: x += dx # diagonal
q = Vector2(x, y)
t = get_tile(q)
tiles.append(t)
t.blocked = los_blocked || blocked == 0x03
if t.blocked and not contact:
var o : int = _compute_orientation(dx, dy, flat)
if not los_blocked and blocked == 0x03:
ret = _compute_contact(from.position, to.position, t.position, opposite(o))
else:
ret = _compute_contact(from.position, to.position, tiles[tiles.size() - idx].position, o)
contact = true;
los_blocked = t.blocked || t.block_los(from, to, d, distance(p0, q))
return ret
func _compute_orientation(dx :int, dy :int, flat : bool) -> int:
if flat:
if v: return Orientation.S if dy == 1 else Orientation.N
else: return Orientation.S if dx == 1 else Orientation.N
if dx == 1:
if dy == 1: return Orientation.E
else: return Orientation.E if v else Orientation.N
else:
if dy == 1: return Orientation.W if v else Orientation.S
else: return Orientation.W
func _compute_contact(from : Vector2, to : Vector2, t : Vector2, o : int) -> Vector2:
var dx : float = to.x - from.x
var dy : float = to.y - from.y
var n : float = float(IMAX) if dx == 0 else (dy / dx)
var c : float = from.y - (n * from.x)
if v:
if o == Orientation.N: return Vector2(t.x, t.y - s)
elif o == Orientation.S: return Vector2(t.x, t.y + s)
elif o == Orientation.E:
var x : float = t.x + dw
return Vector2(x, from.y + n * (x - from.x))
elif o == Orientation.W:
var x : float = t.x - dw
return Vector2(x, from.y + n * (x - from.x))
else:
var p : float = -m if (o == Orientation.SE or o == Orientation.NW) else m
var k : float = t.y - p * t.x
if o == Orientation.SE || o == Orientation.SW: k += s
else: k -= s
var x : float = (k - c) / (n - p)
return Vector2(x, n * x + c)
else:
if o == Orientation.E: return Vector2(t.x + s, t.y)
elif o == Orientation.W: return Vector2(t.x - s, t.y)
elif o == Orientation.N:
var y : float = t.y - dw
return Vector2(from.x + (y - from.y) / n, y)
elif o == Orientation.S:
var y : float = t.y + dw
return Vector2(from.x + (y - from.y) / n, y)
else:
var p : float = -im if (o == Orientation.SE or o == Orientation.NW) else +im
var k : float = 0
if o == Orientation.SW or o == Orientation.NW: k = t.y - (p * (t.x - s))
else: k = t.y - (p * (t.x + s))
var x : float = (k - c) / (n - p)
return Vector2(x, n * x + c);
# compute as an Array, the Tiles that can be reached by a given Piece from a Tile given by it's col;row coordinates
# return the size of the built Array
func possible_moves(piece : Piece, from : Tile, tiles : Array) -> int:
tiles.clear()
if piece.get_mp() <= 0 or not is_on_map(from.coords): return 0
var road_march_bonus : int = piece.road_march_bonus()
search_count += 1
from.parent = null
from.acc = piece.get_mp()
from.search_count = search_count
from.road_march = road_march_bonus > 0
stack.push_back(from)
while(not stack.empty()):
var src : Tile = stack.pop_back()
if (src.acc + (road_march_bonus if src.road_march else 0)) <= 0: continue
# warning-ignore:return_value_discarded
build_adjacents(src.coords)
for dst in adjacents:
if not dst.on_map: continue
var o : int = to_orientation(angle(src, dst))
var cost : int = piece.move_cost(src, dst, o)
if (cost == -1): continue # impracticable
var r : int = src.acc - cost
var rm : bool = src.road_march and src.has_road(o)
# not enough MP even with RM, maybe first move allowed
if ((r + (road_march_bonus if rm else 0)) < 0 and not (src == from and piece.at_least_one_tile(dst))): continue
if dst.search_count != search_count:
dst.search_count = search_count
dst.acc = r
dst.parent = src
dst.road_march = rm
stack.push_back(dst)
tiles.append(dst)
elif (r > dst.acc or (rm and (r + road_march_bonus > dst.acc + (road_march_bonus if dst.road_march else 0)))):
dst.acc = r
dst.parent = src
dst.road_march = rm
stack.push_back(dst)
return tiles.size()
# compute as an Array, the shortest path for a given Piece from a Tile to another given by there col;row coordinates
# return the size of the built Array
func shortest_path(piece : Piece, from : Tile, to : Tile, tiles : Array) -> int:
tiles.clear()
if from == to or not is_on_map(from.coords) or not is_on_map(to.coords): return tiles.size()
var road_march_bonus : int = piece.road_march_bonus()
search_count += 1
from.acc = 0
from.parent = null
from.search_count = search_count
from.road_march = road_march_bonus > 0
stack.push_back(from)
while(not stack.empty()):
var src : Tile = stack.pop_back()
if (src == to): break
# warning-ignore:return_value_discarded
build_adjacents(src.coords)
for dst in adjacents:
if not dst.on_map: continue
var o : int = to_orientation(angle(src, dst))
var cost : int = piece.move_cost(src, dst, o)
if (cost == -1): continue # impracticable
cost += src.acc
var total : float = cost + distance(dst.coords, to.coords)
var rm : bool = src.road_march and src.has_road(o)
if rm: total -= road_march_bonus
var add : bool = false
if dst.search_count != search_count:
dst.search_count = search_count
add = true
elif dst.f > total or (rm and not dst.road_march and abs(dst.f - total) < 0.001):
stack.erase(dst)
add = true
if add:
dst.acc = cost
dst.f = total
dst.road_march = rm
dst.parent = src
var idx : int = IMAX
for k in range(stack.size()):
if stack[k].f <= dst.f:
idx = k
break
if idx == IMAX: stack.push_back(dst)
else: stack.insert(idx, dst)
stack.clear()
if to.search_count == search_count:
var t : Tile = to
while t != from:
tiles.push_front(t)
t = t.parent
tiles.push_front(from)
return tiles.size()
func range_of_influence(piece : Piece, from : Tile, category : int, tiles : Array) -> int:
tiles.clear()
var max_range : int = piece.max_range_of_fire(category, from)
if not is_on_map(from.coords): return 0
var tmp : Array = []
search_count += 1
from.search_count = search_count
stack.push_back(from)
while(not stack.empty()):
var src : Tile = stack.pop_back()
# warning-ignore:return_value_discarded
build_adjacents(src.coords)
for dst in adjacents:
if not dst.on_map: continue
if dst.search_count == search_count: continue
dst.search_count = search_count
var d : int = int(distance(from.coords, dst.coords, false))
if d > max_range: continue
if line_of_sight(from.coords, dst.coords, tmp).x != -1: continue
var o : int = distant_orientation(from, dst)
dst.f = piece.volume_of_fire(category, d, from, o, dst, distant_opposite(o))
stack.push_back(dst)
tiles.append(dst)
return tiles.size()
|