summaryrefslogtreecommitdiffstats
path: root/HexBoard.gd
blob: 0bc6fa17d35c34edc9be57c2c1450ea3c6cf4142 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
#warning-ignore-all:integer_division
extends Node

class_name HexBoard, "res://godot/HexBoard.png"

enum Orientation { E=1, NE=2, N=4, NW=8, W=16, SW=32, S=64, SE=128 }

const IMAX : int = 9999999999
const DEGREE_ADJ : int = 2

var bt : Vector2	# bottom corner
var cr : Vector2	# column, row

var v : bool		# hex have a vertical edje

var s : float		# hex side length
var w : float		# hex width between 2 parallel sides
var h : float		# hex height from the bottom of the middle rectangle to the top of the upper edje
var dw : float		# half width
var dh : float		# half height (from the top ef tho middle rectangle to the top of the upper edje)
var m : float		# dh / dw
var im : float		# dw / dh
var tl : int		# num of hexes in 2 consecutives rows

var tile_factory_fct : FuncRef
var angles : Dictionary
var adjacents : Array
var search_count : int
var stack : Array

func configure(cols : int, rows : int, side : float, v0 : Vector2, vertical : bool) -> void:
	v = vertical
	s = side
	w  = s * 1.73205
	dw = w / 2.0
	dh = s / 2.0
	h  = s + dh
	m = dh / dw
	im = dw / dh
	if v:
		bt = v0
		cr = Vector2(cols, rows)
	else:
		bt = v0
		cr = Vector2(rows, cols)
	tl = (2 * int(cr.x) - 1)
	search_count = 0
	angles = {}
	if v:
		# origin [top-left] East is at 0°, degrees grows clockwise
		angles[Orientation.E] = 0
		angles[Orientation.SE] = 60
		angles[Orientation.SW] = 120
		angles[Orientation.W] = 180
		angles[Orientation.NW] = 240
		angles[Orientation.NE] = 300
	else:
		angles[Orientation.SE] = 30
		angles[Orientation.S] = 90
		angles[Orientation.SW] = 150
		angles[Orientation.NW] = 210
		angles[Orientation.N] = 270
		angles[Orientation.NE] = 330

# the number of Tile
func size() -> int:
	return int(cr.y) / 2 * tl + int(cr.y) % 2 * int(cr.x)

# fetch a Tile given it's col;row coordinates
func get_tile(coords : Vector2) -> Tile:
	return tile_factory_fct.call_func(coords, key(coords))

# Orientation to degrees
func to_degrees(o : int) -> int:
	return angles.get(o, -1)

# convert the given angle between 2 adjacent Tiles into an Orientation
func to_orientation(a : float) -> int:
	for k in angles.keys():
		if angles[k] == a:
			return k
	return -1

# compute the angle between 2 adjacent Tiles
func angle(from : Tile, to : Tile) -> int:
	var a : float = rad2deg((to.position - from.position).angle()) + DEGREE_ADJ
	if a < 0: a += 360
	return int(a / 10) * 10

# return the opposite of a given Orientation
func opposite(o : int) -> int:
	if o <= Orientation.NW: return o << 4
	return o >> 4

# return the key of a given col;row coordinate
func key(coords : Vector2) -> int:
	if not is_on_map(coords): return -1
	if v: return _key(int(coords.x), int(coords.y))
	else: return _key(int(coords.y), int(coords.x))

func _key(x : int, y : int) -> int:
	var n : int = y / 2
	var i : int =  x - n + n * tl
	if (y % 2) != 0:
		i += (int(cr.x) - 1)
	return i

# build the 6 adjacent Tiles of a Tile given by it's col;row coordinates
func build_adjacents(coords : Vector2) -> Array:
	adjacents.clear()
	coords.x += 1
	adjacents.append(get_tile(coords))
	coords.y += 1
	adjacents.append(get_tile(coords))
	coords.x -= 1
	adjacents.append(get_tile(coords))
	coords.x -= 1
	coords.y -= 1
	adjacents.append(get_tile(coords))
	coords.y -= 1
	adjacents.append(get_tile(coords))
	coords.x += 1
	adjacents.append(get_tile(coords))
	return adjacents

# return true if the Tile is on the map
func is_on_map(coords : Vector2) -> bool:
	if v: return _is_on_map(int(coords.x), int(coords.y))
	else: return _is_on_map(int(coords.y), int(coords.x))

func _is_on_map(x : int, y : int) -> bool:
	if (y < 0) || (y >= int(cr.y)): return false
	if (x < ((y + 1) / 2)) || (x >= (int(cr.x) + (y / 2))): return false
	return true

# compute the center of a Tile given by it's col;row coordinates
func center_of(coords : Vector2) -> Vector2:
	if v: return Vector2(bt.x + dw + (coords.x * w) - (coords.y * dw), bt.y + dh + (coords.y * h))
	else: return Vector2(bt.y + dh + (coords.x * h), bt.x + dw + (coords.y * w) - (coords.x * dw))

# compute the col;row coordinates of a Tile given it's real coordinates
func to_map(r : Vector2) -> Vector2:
	if v: return _to_map(r.x, r.y, false)
	else: return _to_map(r.y, r.x, true)

func _to_map(x : float, y : float, swap : bool) -> Vector2:
	var col : int = -1
	var row : int = -1
	# compute row
	var dy : float = y - bt.y
	row = int(dy / h)
	if dy < 0:
		row -= 1
	# compute col
	var dx : float = x - bt.x + (row * dw);
	col = int(dx / w)
	if dx < 0:
		col -= 1
	# upper rectangle or hex body
	if dy > ((row * h) + s):
		dy -= ((row * h) + s)
		dx -= (col * w)
		# upper left or right rectangle
		if dx < dw:
			if dy > (dx * m):
				# upper left hex
				row += 1
		else:
			if dy > ((w - dx) * m):
				# upper right hex
				row += 1
				col += 1
	if swap: return Vector2(row, col)
	else: return Vector2(col, row)

# compute the distance between 2 Tiles given by their col;row coordinates
func distance(p0 : Vector2, p1 : Vector2, euclidean : bool = true) -> float:
	var dx : int = int(p1.x - p0.x)
	var dy : int = int(p1.y - p0.y)
	if euclidean:
		if dx == 0: return abs(dy)
		elif dy == 0 || dx == dy: return abs(dx)
		var fdx : float = dx - dy / 2;
		var fdy : float = dy * 0.86602
		return sqrt((fdx * fdx) + (fdy * fdy))
	else:
		dx = int(abs(dx))
		dy = int(abs(dy))
		var dz : float = abs(p1.x - p0.x - p1.y + p0.y)
		if dx > dy:
			if dx > dz: return float(dx)
		else:
			if dy > dz: return float(dy)
		return dz

# http://zvold.blogspot.com/2010/01/bresenhams-line-drawing-algorithm-on_26.html
# http://zvold.blogspot.com/2010/02/line-of-sight-on-hexagonal-grid.html
# compute as an Array, the line of sight between 2 Tiles given by their col;row coordinates
# return the point after which the line of sight is blocked
func line_of_sight(p0 : Vector2, p1 : Vector2, tiles : Array) -> Vector2:
	tiles.clear()
	# orthogonal projection
	var ox0 : float = p0.x - (p0.y + 1) / 2
	var ox1 : float = p1.x - (p1.y + 1) / 2
	var dy : int = int(p1.y) - int(p0.y)
	var dx : float = ox1 - ox0
	# quadrant I && III
	var q13 : bool = (dx >= 0 && dy >= 0) || (dx < 0 && dy < 0)
	# is positive
	var xs : int = 1
	var ys : int = 1
	if dx < 0: xs = -1
	if dy < 0: ys = -1
	# dx counts half width
	dy = int(abs(dy))
	dx = abs(2 * dx)
	var dx3 : int = int(3 * dx)
	var dy3 : int = 3 * dy
	# check for diagonals
	if dx == 0 || dx == dy3:
		return _diagonal_los(p0, p1, (dx == 0), q13, tiles)
	# angle is less than 45°
	var flat : bool = dx > dy3
	var x : int = int(p0.x)
	var y : int = int(p0.y);
	var e : int = int(-2 * dx)
	var from : Tile = get_tile(p0)
	var to : Tile = get_tile(p1)
	var d : float = distance(p0, p1)
	tiles.append(from)
	from.blocked = false
	var ret : Vector2 = Vector2(-1, -1)
	var contact : bool = false
	var los_blocked : bool = false
	while (x != p1.x) or (y != p1.y):
		if e > 0:
			# quadrant I : up left
			e -= (dy3 + dx3)
			y += ys
			if not q13: x -= xs
		else:
			e += dy3
			if (e > -dx) or (not flat && (e == -dx)):
				# quadrant I : up right
				e -= dx3
				y += ys
				if q13: x += xs
			elif e < -dx3:
				# quadrant I : down right
				e += dx3
				y -= ys
				if not q13: x += xs
			else:
				# quadrant I : right
				e += dy3
				x += xs
		var q : Vector2 = Vector2(x, y)
		var t : Tile = get_tile(q)
		if los_blocked and not contact:
			var prev : Tile = tiles[tiles.size() - 1]
			var o : int = to_orientation(angle(prev, t))
			ret = _compute_contact(from.position, to.position, prev.position, o)
			contact = true
		tiles.append(t)
		t.blocked = los_blocked
		los_blocked = los_blocked or t.block_los(from, to, d, distance(p0, q))
	return ret

func _diagonal_los(p0 : Vector2, p1 : Vector2, flat : bool, q13 : bool, tiles : Array) -> Vector2:
	var dy : int = 1 if p1.y > p0.y else -1
	var dx : int = 1 if p1.x > p0.x else -1
	var x : int = int(p0.x)
	var y : int = int(p0.y)
	var from : Tile = get_tile(p0);
	var to : Tile = get_tile(p1);
	var d : float = distance(p0, p1)
	tiles.append(from);
	from.blocked = false;
	var ret : Vector2 = Vector2(-1, -1)
	var blocked : int = 0
	var contact : bool = false
	var los_blocked : bool = false
	while (x != p1.x) or (y != p1.y):
		var idx : int = 4
		if flat: y += dy	# up left
		else: x += dx		# right
		var q : Vector2 = Vector2(x, y)
		var t : Tile = get_tile(q)
		if t.on_board:
			tiles.append(t)
			t.blocked = los_blocked
			if t.block_los(from, to, d, distance(p0, q)):
				blocked |= 0x01
		else:
			blocked |= 0x01
			idx = 3

		if flat: x += dx	# up right
		else:
			y += dy		# up right
			if not q13: x -= dx
		q = Vector2(x, y)
		t = get_tile(q)
		if t.on_board:
			tiles.append(t)
			t.blocked = los_blocked
			if t.block_los(from, to, d, distance(p0, q)):
				blocked |= 0x02
		else:
			blocked |= 0x02
			idx = 3

		if flat: y += dy	# up
		else: x += dx 		# diagonal
		q = Vector2(x, y)
		t = get_tile(q)
		tiles.append(t)
		t.blocked = los_blocked || blocked == 0x03
		if t.blocked and not contact:
			var o : int = _compute_orientation(dx, dy, flat)
			if not los_blocked and blocked == 0x03:
				ret = _compute_contact(from.position, to.position, t.position, opposite(o))
			else:
				ret = _compute_contact(from.position, to.position, tiles[tiles.size() - idx].position, o)
			contact = true;
		los_blocked = t.blocked || t.block_los(from, to, d, distance(p0, q))
	return ret

func _compute_orientation(dx :int, dy :int, flat : bool) -> int:
	if flat:
		if v: return Orientation.S if dy == 1 else Orientation.N
		else: return Orientation.S if dx == 1 else Orientation.N
	if dx == 1:
		if dy == 1: return Orientation.E
		else: return Orientation.E if v else Orientation.N
	else:
		if dy == 1: return Orientation.W if v else Orientation.S
		else: return Orientation.W

func _compute_contact(from : Vector2, to : Vector2, t : Vector2, o : int) -> Vector2:
	var dx : float = to.x - from.x
	var dy : float = to.y - from.y
	var n : float = float(IMAX) if dx == 0 else (dy / dx)
	var c : float = from.y - (n * from.x)
	if v:
		if o == Orientation.N: return Vector2(t.x, t.y - s)
		elif o == Orientation.S: return Vector2(t.x, t.y + s)
		elif o == Orientation.E:
			var x : float = t.x + dw
			return Vector2(x, from.y + n * (x - from.x))
		elif o == Orientation.W:
			var x : float = t.x - dw
			return Vector2(x, from.y + n * (x - from.x))
		else:
			var p : float = -m if (o == Orientation.SE or o == Orientation.NW) else m
			var k : float = t.y - p * t.x
			if o == Orientation.SE || o == Orientation.SW: k += s
			else: k -= s
			var x : float = (k - c) / (n - p)
			return Vector2(x, n * x + c)
	else:
		if o == Orientation.E: return Vector2(t.x + s, t.y)
		elif o == Orientation.W: return Vector2(t.x - s, t.y)
		elif o == Orientation.N:
			var y : float = t.y - dw
			return Vector2(from.x + (y - from.y) / n, y)
		elif o == Orientation.S:
			var y : float = t.y + dw
			return Vector2(from.x + (y - from.y) / n, y)
		else:
			var p : float = -im if (o == Orientation.SE or o == Orientation.NW) else +im
			var k : float = 0
			if o == Orientation.SW or o == Orientation.NW: k = t.y - (p * (t.x - s))
			else: k = t.y - (p * (t.x + s))
			var x : float = (k - c) / (n - p)
			return Vector2(x, n * x + c);

# compute as an Array, the Tiles that can be reached by a given Piece from a Tile given by it's col;row coordinates
# return the size of the built Array
func possible_moves(piece : Piece, from : Tile, tiles : Array) -> int:
	tiles.clear()
	if piece.get_mp() <= 0 or not is_on_map(from.coords): return 0
	var road_march_bonus : int = piece.road_march_bonus()
	search_count += 1
	from.parent = null
	from.acc = piece.get_mp()
	from.search_count = search_count
	from.road_march = road_march_bonus > 0
	stack.push_back(from)
	while(not stack.empty()):
		var src : Tile = stack.pop_back()
		if (src.acc + (road_march_bonus if src.road_march else 0)) <= 0: continue
		# warning-ignore:return_value_discarded
		build_adjacents(src.coords)
		for dst in adjacents:
			if not dst.on_board: continue
			var o : int = to_orientation(angle(src, dst))
			var cost : int = piece.move_cost(src, dst, o)
			if (cost == -1): continue # impracticable
			var r : int = src.acc - cost
			var rm : bool = src.road_march and src.has_road(o)
			# not enough MP even with RM, maybe first move allowed
			if ((r + (road_march_bonus if rm else 0)) < 0 and not (src == from and piece.at_least_one_tile(dst))): continue
			if dst.search_count != search_count:
				dst.search_count = search_count
				dst.acc = r
				dst.parent = src
				dst.road_march = rm
				stack.push_back(dst)
				tiles.append(dst)
			elif (r > dst.acc or (rm and (r + road_march_bonus > dst.acc + (road_march_bonus if dst.road_march else 0)))):
				dst.acc = r
				dst.parent = src
				dst.road_march = rm
				stack.push_back(dst)
	return tiles.size()

# compute as an Array, the shortest path for a given Piece from a Tile to another given by there col;row coordinates
# return the size of the built Array
func shortest_path(piece : Piece, from : Tile,  to : Tile, tiles : Array) -> int:
	tiles.clear()
	if from == to or not is_on_map(from.coords) or not is_on_map(to.coords): return tiles.size()
	var road_march_bonus : int = piece.road_march_bonus()
	search_count += 1
	from.acc = 0
	from.parent = null
	from.search_count = search_count
	from.road_march = road_march_bonus > 0
	stack.push_back(from)
	while(not stack.empty()):
		var src : Tile = stack.pop_back()
		if (src == to): break
		# warning-ignore:return_value_discarded
		build_adjacents(src.coords)
		for dst in adjacents:
			if not dst.on_board: continue
			var o : int = to_orientation(angle(src, dst))
			var cost : int = piece.move_cost(src, dst, o)
			if (cost == -1): continue # impracticable
			cost += src.acc
			var total : float  = cost + distance(dst.coords, to.coords)
			var rm : bool = src.road_march and src.has_road(o)
			if rm: total -= road_march_bonus
			var add : bool = false
			if dst.search_count != search_count:
				dst.search_count = search_count
				add = true
			elif dst.f > total or (rm and not dst.road_march and abs(dst.f - total) < 0.001):
				stack.erase(dst)
				add = true
			if add:
				dst.acc = cost
				dst.f = total
				dst.road_march = rm
				dst.parent = src
				var idx : int = IMAX
				for k in range(stack.size()):
					if stack[k].f <= dst.f:
						idx = k
						break
				if idx == IMAX: stack.push_back(dst)
				else: stack.insert(idx, dst)
	stack.clear()
	if to.search_count == search_count:
		var t : Tile = to
		while t != from:
			tiles.push_front(t)
			t = t.parent
		tiles.push_front(from)
	return tiles.size()