diff options
author | Jérémy Zurcher <jeremy@asynk.ch> | 2020-07-09 13:56:46 +0200 |
---|---|---|
committer | Jérémy Zurcher <jeremy@asynk.ch> | 2020-07-09 13:56:46 +0200 |
commit | 72174f8aa1d75707d8a9358c24771054da46b167 (patch) | |
tree | 9fcbf2e4cfa9b15bbea376cda0c4805304ad9c2f /HexBoard.gd | |
download | godot-hexgrid-72174f8aa1d75707d8a9358c24771054da46b167.zip godot-hexgrid-72174f8aa1d75707d8a9358c24771054da46b167.tar.gz |
Initial commit
Diffstat (limited to 'HexBoard.gd')
-rw-r--r-- | HexBoard.gd | 345 |
1 files changed, 345 insertions, 0 deletions
diff --git a/HexBoard.gd b/HexBoard.gd new file mode 100644 index 0000000..ce240f8 --- /dev/null +++ b/HexBoard.gd @@ -0,0 +1,345 @@ +#warning-ignore-all:integer_division +extends Node + +class_name HexBoard, "res://godot/HexBoard.png" + +enum Orientation { E=1, NE=2, N=4, NW=8, W=16, SW=32, S=64, SE=128 } + +var bt : Vector2 # bottom corner +var cr : Vector2 # column, row + +var v : bool # hex have a vertical edje + +var s : float # hex side length +var w : float # hex width between 2 parallel sides +var h : float # hex height from the bottom of the middle rectangle to the top of the upper edje +var dw : float # half width +var dh : float # half height (from the top ef tho middle rectangle to the top of the upper edje) +var m : float # dh / dw +var im : float # dw / dh +var tl : int # num of hexes in 2 consecutives rows + +var tile_factory_fct : FuncRef +var angles : Dictionary + +func configure(cols : int, rows : int, side : float, v0 : Vector2, vertical : bool) -> void: + v = vertical + s = side + w = s * 1.73205 + dw = w / 2.0 + dh = s / 2.0 + h = s + dh + m = dh / dw + im = dw / dh + if v: + bt = v0 + cr = Vector2(cols, rows) + else: + bt = v0 + cr = Vector2(rows, cols) + tl = (2 * int(cr.x) - 1) + angles = {} + if v: + angles[Orientation.E] = 0 + angles[Orientation.NE] = 60 + angles[Orientation.NW] = 120 + angles[Orientation.W] = 180 + angles[Orientation.SW] = 240 + angles[Orientation.SE] = 300 + else: + angles[Orientation.NE] = 30 + angles[Orientation.N] = 90 + angles[Orientation.NW] = 150 + angles[Orientation.SW] = 210 + angles[Orientation.S] = 270 + angles[Orientation.SE] = 330 + +func size() -> int: + return int(cr.y) / 2 * tl + int(cr.y) % 2 * int(cr.x) + +func get_tile(coords : Vector2) -> Tile: + return tile_factory_fct.call_func(coords, key(coords)) + +func to_angle(o : int) -> int: + return angles.get(o, -1) + +func to_orientation(a : float) -> int: + for k in angles.keys(): + if angles[k] == a: + return k + return -1 + +func angle(from : Tile, to : Tile) -> int: + var a : float = rad2deg((to.position - from.position).angle()) + 2 + if a < 0: a += 360 + return int(a / 10) * 10 + +func opposite(o : int) -> int: + if o <= Orientation.NW: return o << 4 + return o >> 4 + +func key(coords : Vector2) -> int: + if not is_on_map(coords): return -1 + if v: return _key(int(coords.x), int(coords.y)) + else: return _key(int(coords.y), int(coords.x)) + +func _key(x : int, y : int) -> int: + var n : int = y / 2 + var i : int = x - n + n * tl + if (y % 2) != 0: + i += (int(cr.x) - 1) + return i + +func is_on_map(coords : Vector2) -> bool: + if v: return _is_on_map(int(coords.x), int(coords.y)) + else: return _is_on_map(int(coords.y), int(coords.x)) + +func _is_on_map(x : int, y : int) -> bool: + if (y < 0) || (y >= int(cr.y)): return false + if (x < ((y + 1) / 2)) || (x >= (int(cr.x) + (y / 2))): return false + return true + +func center_of(coords : Vector2) -> Vector2: + if v: return Vector2(bt.x + dw + (coords.x * w) - (coords.y * dw), bt.y + dh + (coords.y * h)) + else: return Vector2(bt.y + dh + (coords.x * h), bt.x + dw + (coords.y * w) - (coords.x * dw)) + +func to_map(r : Vector2) -> Vector2: + if v: return _to_map(r.x, r.y, false) + else: return _to_map(r.y, r.x, true) + +func _to_map(x : float, y : float, swap : bool) -> Vector2: + var col : int = -1 + var row : int = -1 + # compute row + var dy : float = y - bt.y + row = int(dy / h) + if dy < 0: + row -= 1 + # compute col + var dx : float = x - bt.x + (row * dw); + col = int(dx / w) + if dx < 0: + col -= 1 + # upper rectangle or hex body + if dy > ((row * h) + s): + dy -= ((row * h) + s) + dx -= (col * w) + # upper left or right rectangle + if dx < dw: + if dy > (dx * m): + # upper left hex + row += 1 + else: + if dy > ((w - dx) * m): + # upper right hex + row += 1 + col += 1 + if swap: return Vector2(row, col) + else: return Vector2(col, row) + +func distance(p0 : Vector2, p1 : Vector2, euclidean : bool = true) -> float: + var dx : int = int(p1.x - p0.x) + var dy : int = int(p1.y - p0.y) + if euclidean: + if dx == 0: return abs(dy) + elif dy == 0 || dx == dy: return abs(dx) + var fdx : float = dx - dy / 2; + var fdy : float = dy * 0.86602 + return sqrt((fdx * fdx) + (fdy * fdy)) + else: + var dz : float = abs((p0.x - p0.y) - (p1.x - p1.y)) + if dx > dy: + if dx > dz : return abs(dx) + else: + if dy > dz: return abs(dy) + return dz + +# http://zvold.blogspot.com/2010/01/bresenhams-line-drawing-algorithm-on_26.html +# http://zvold.blogspot.com/2010/02/line-of-sight-on-hexagonal-grid.html +func line_of_sight(p0 : Vector2, p1 : Vector2, tiles : Array) -> Vector2: + tiles.clear() + # orthogonal projection + var ox0 : float = p0.x - (p0.y + 1) / 2 + var ox1 : float = p1.x - (p1.y + 1) / 2 + var dy : int = int(p1.y) - int(p0.y) + var dx : float = ox1 - ox0 + # quadrant I && III + var q13 : bool = (dx >= 0 && dy >= 0) || (dx < 0 && dy < 0) + # is positive + var xs : int = 1 + var ys : int = 1 + if dx < 0: xs = -1 + if dy < 0: ys = -1 + # dx counts half width + dy = int(abs(dy)) + dx = abs(2 * dx) + var dx3 : int = int(3 * dx) + var dy3 : int = 3 * dy + # check for diagonals + if dx == 0 || dx == dy3: + return diagonal_los(p0, p1, (dx == 0), q13, tiles) + # angle is less than 45° + var flat : bool = dx > dy3 + var x : int = int(p0.x) + var y : int = int(p0.y); + var e : int = int(-2 * dx) + var from : Tile = get_tile(p0) + var to : Tile = get_tile(p1) + var d : float = distance(p0, p1) + tiles.append(from) + from.blocked = false + var ret : Vector2 = Vector2(-1, -1) + var contact : bool = false + var los_blocked : bool = false + while (x != p1.x) or (y != p1.y): + if e > 0: + # quadrant I : up left + e -= (dy3 + dx3) + y += ys + if not q13: x -= xs + else: + e += dy3 + if (e > -dx) or (not flat && (e == -dx)): + # quadrant I : up right + e -= dx3 + y += ys + if q13: x += xs + elif e < -dx3: + # quadrant I : down right + e += dx3 + y -= ys + if not q13: x += xs + else: + # quadrant I : right + e += dy3 + x += xs + var q : Vector2 = Vector2(x, y) + var t : Tile = get_tile(q) + if los_blocked and not contact: + var o : int = to_orientation(angle(tiles[tiles.size() - 1], t)) + ret = compute_contact(from.position, to.position, o, t.position, true) + contact = true + tiles.append(t) + t.blocked = los_blocked + los_blocked = los_blocked or t.block_los(from, to, d, distance(p0, q)) + return ret + +func diagonal_los(p0 : Vector2, p1 : Vector2, flat : bool, q13 : bool, tiles : Array) -> Vector2: + var dy : int = 1 if p1.y > p0.y else -1 + var dx : int = 1 if p1.x > p0.x else -1 + var x : int = int(p0.x) + var y : int = int(p0.y) + var from : Tile = get_tile(p0); + var to : Tile = get_tile(p1); + var d : float = distance(p0, p1) + tiles.append(from); + from.blocked = false; + var ret : Vector2 = Vector2(-1, -1) + var blocked : int = 0 + var contact : bool = false + var los_blocked : bool = false + while (x != p1.x) or (y != p1.y): + var idx : int = 4 + if flat: y += dy # up left + else: x += dx # right + var q : Vector2 = Vector2(x, y) + var t : Tile = get_tile(q) + if t.on_board: + tiles.append(t) + t.blocked = los_blocked + if t.block_los(from, to, d, distance(p0, q)): + blocked |= 0x01 + else: + blocked |= 0x01 + idx = 3 + + if flat: x += dx # up right + else: + y += dy # up right + if not q13: x -= dx + q = Vector2(x, y) + t = get_tile(q) + if t.on_board: + tiles.append(t) + t.blocked = los_blocked + if t.block_los(from, to, d, distance(p0, q)): + blocked |= 0x02 + else: + blocked |= 0x02 + idx = 3 + + if flat: y += dy # up + else: x += dx # diagonal + q = Vector2(x, y) + t = get_tile(q) + tiles.append(t) + t.blocked = los_blocked || blocked == 0x03 + if t.blocked and not contact: + var o : int = compute_orientation(dx, dy, flat) + if not los_blocked and blocked == 0x03: + ret = compute_contact(from.position, to.position, o, t.position, false) + else: + ret = compute_contact(from.position, to.position, opposite(o), tiles[tiles.size() - idx].position, false) + contact = true; + los_blocked = t.blocked || t.block_los(from, to, d, distance(p0, q)) + return ret + +func compute_orientation(dx :int, dy :int, flat : bool) -> int: + if flat: + if v: return Orientation.N if dy == 1 else Orientation.S + else: return Orientation.NE if dy == 1 else Orientation.SW + if dx == 1: + if dy == 1: return Orientation.NE if v else Orientation.E + else: return Orientation.SE + else: + if dy == 1: return Orientation.NW + else: return Orientation.SW if v else Orientation.W + +func compute_contact(from : Vector2, to : Vector2, o : int, t : Vector2, line : bool) -> Vector2: + var dx : float = to.x - from.x + var dy : float = to.y - from.y + var n : float = 9999999999.0 if dx == 0 else (dy / dx) + var c : float = from.y - (n * from.x) + if v: + if o == Orientation.N: return Vector2(t.x, t.y - s) + elif o == Orientation.S: return Vector2(t.x, t.y + s) + elif o == Orientation.E: + var x : float = t.x - dw + return Vector2(x, from.y + n * (x - from.x)) + elif o == Orientation.W: + var x : float = t.x + dw + return Vector2(x, from.y + n * (x - from.x)) + else: + if line: + var p : float = m if (o == Orientation.SE or o == Orientation.NW) else -m + var k : float = t.y - p * t.x + if o == Orientation.SE || o == Orientation.SW: k += s + else: k -= s + var x : float = (k - c) / (n - p) + return Vector2(x, n * x + c) + else: + var x : float = t.x + (-dw if (o == Orientation.NE or o == Orientation.SE) else dw) + var y : float = t.y + (dh if (o == Orientation.SE or o == Orientation.SW) else -dh) + return Vector2(x, y) + else: + if o == Orientation.E: return Vector2(t.x - s, t.y) + elif o == Orientation.W: return Vector2(t.x + s, t.y) + elif o == Orientation.N: + var y : float = t.y - dw + return Vector2(from.x + (y - from.y) / n, y) + elif o == Orientation.S: + var y : float = t.y + dw + return Vector2(from.x + (y - from.y) / n, y) + else: + if line: +# o = 1 + var p : float = im if (o == Orientation.SE or o == Orientation.NW) else -im + var k : float = 0 + if o == Orientation.SW or o == Orientation.NW: k = t.y - (p * (t.x + s)) + else: k = t.y - (p * (t.x - s)) + var x : float = (k - c) / (n - p) + return Vector2(x, n * x + c); + else: + var x : float = t.x + (dh if (o == Orientation.NW || o == Orientation.SW) else -dh) + var y : float = t.y + (dw if (o == Orientation.SE || o == Orientation.SW) else -dw) + return Vector2(x, y) |