#warning-ignore-all:integer_division extends Node class_name HexBoard, "res://godot/HexBoard.png" enum Orientation { E=1, NE=2, N=4, NW=8, W=16, SW=32, S=64, SE=128 } var bt : Vector2 # bottom corner var cr : Vector2 # column, row var v : bool # hex have a vertical edje var s : float # hex side length var w : float # hex width between 2 parallel sides var h : float # hex height from the bottom of the middle rectangle to the top of the upper edje var dw : float # half width var dh : float # half height (from the top ef tho middle rectangle to the top of the upper edje) var m : float # dh / dw var im : float # dw / dh var tl : int # num of hexes in 2 consecutives rows var tile_factory_fct : FuncRef var angles : Dictionary func configure(cols : int, rows : int, side : float, v0 : Vector2, vertical : bool) -> void: v = vertical s = side w = s * 1.73205 dw = w / 2.0 dh = s / 2.0 h = s + dh m = dh / dw im = dw / dh if v: bt = v0 cr = Vector2(cols, rows) else: bt = v0 cr = Vector2(rows, cols) tl = (2 * int(cr.x) - 1) angles = {} if v: angles[Orientation.E] = 0 angles[Orientation.NE] = 60 angles[Orientation.NW] = 120 angles[Orientation.W] = 180 angles[Orientation.SW] = 240 angles[Orientation.SE] = 300 else: angles[Orientation.NE] = 30 angles[Orientation.N] = 90 angles[Orientation.NW] = 150 angles[Orientation.SW] = 210 angles[Orientation.S] = 270 angles[Orientation.SE] = 330 func size() -> int: return int(cr.y) / 2 * tl + int(cr.y) % 2 * int(cr.x) func get_tile(coords : Vector2) -> Tile: return tile_factory_fct.call_func(coords, key(coords)) func to_angle(o : int) -> int: return angles.get(o, -1) func to_orientation(a : float) -> int: for k in angles.keys(): if angles[k] == a: return k return -1 func angle(from : Tile, to : Tile) -> int: var a : float = rad2deg((to.position - from.position).angle()) + 2 if a < 0: a += 360 return int(a / 10) * 10 func opposite(o : int) -> int: if o <= Orientation.NW: return o << 4 return o >> 4 func key(coords : Vector2) -> int: if not is_on_map(coords): return -1 if v: return _key(int(coords.x), int(coords.y)) else: return _key(int(coords.y), int(coords.x)) func _key(x : int, y : int) -> int: var n : int = y / 2 var i : int = x - n + n * tl if (y % 2) != 0: i += (int(cr.x) - 1) return i func is_on_map(coords : Vector2) -> bool: if v: return _is_on_map(int(coords.x), int(coords.y)) else: return _is_on_map(int(coords.y), int(coords.x)) func _is_on_map(x : int, y : int) -> bool: if (y < 0) || (y >= int(cr.y)): return false if (x < ((y + 1) / 2)) || (x >= (int(cr.x) + (y / 2))): return false return true func center_of(coords : Vector2) -> Vector2: if v: return Vector2(bt.x + dw + (coords.x * w) - (coords.y * dw), bt.y + dh + (coords.y * h)) else: return Vector2(bt.y + dh + (coords.x * h), bt.x + dw + (coords.y * w) - (coords.x * dw)) func to_map(r : Vector2) -> Vector2: if v: return _to_map(r.x, r.y, false) else: return _to_map(r.y, r.x, true) func _to_map(x : float, y : float, swap : bool) -> Vector2: var col : int = -1 var row : int = -1 # compute row var dy : float = y - bt.y row = int(dy / h) if dy < 0: row -= 1 # compute col var dx : float = x - bt.x + (row * dw); col = int(dx / w) if dx < 0: col -= 1 # upper rectangle or hex body if dy > ((row * h) + s): dy -= ((row * h) + s) dx -= (col * w) # upper left or right rectangle if dx < dw: if dy > (dx * m): # upper left hex row += 1 else: if dy > ((w - dx) * m): # upper right hex row += 1 col += 1 if swap: return Vector2(row, col) else: return Vector2(col, row) func distance(p0 : Vector2, p1 : Vector2, euclidean : bool = true) -> float: var dx : int = int(p1.x - p0.x) var dy : int = int(p1.y - p0.y) if euclidean: if dx == 0: return abs(dy) elif dy == 0 || dx == dy: return abs(dx) var fdx : float = dx - dy / 2; var fdy : float = dy * 0.86602 return sqrt((fdx * fdx) + (fdy * fdy)) else: var dz : float = abs((p0.x - p0.y) - (p1.x - p1.y)) if dx > dy: if dx > dz : return abs(dx) else: if dy > dz: return abs(dy) return dz # http://zvold.blogspot.com/2010/01/bresenhams-line-drawing-algorithm-on_26.html # http://zvold.blogspot.com/2010/02/line-of-sight-on-hexagonal-grid.html func line_of_sight(p0 : Vector2, p1 : Vector2, tiles : Array) -> Vector2: tiles.clear() # orthogonal projection var ox0 : float = p0.x - (p0.y + 1) / 2 var ox1 : float = p1.x - (p1.y + 1) / 2 var dy : int = int(p1.y) - int(p0.y) var dx : float = ox1 - ox0 # quadrant I && III var q13 : bool = (dx >= 0 && dy >= 0) || (dx < 0 && dy < 0) # is positive var xs : int = 1 var ys : int = 1 if dx < 0: xs = -1 if dy < 0: ys = -1 # dx counts half width dy = int(abs(dy)) dx = abs(2 * dx) var dx3 : int = int(3 * dx) var dy3 : int = 3 * dy # check for diagonals if dx == 0 || dx == dy3: return diagonal_los(p0, p1, (dx == 0), q13, tiles) # angle is less than 45° var flat : bool = dx > dy3 var x : int = int(p0.x) var y : int = int(p0.y); var e : int = int(-2 * dx) var from : Tile = get_tile(p0) var to : Tile = get_tile(p1) var d : float = distance(p0, p1) tiles.append(from) from.blocked = false var ret : Vector2 = Vector2(-1, -1) var contact : bool = false var los_blocked : bool = false while (x != p1.x) or (y != p1.y): if e > 0: # quadrant I : up left e -= (dy3 + dx3) y += ys if not q13: x -= xs else: e += dy3 if (e > -dx) or (not flat && (e == -dx)): # quadrant I : up right e -= dx3 y += ys if q13: x += xs elif e < -dx3: # quadrant I : down right e += dx3 y -= ys if not q13: x += xs else: # quadrant I : right e += dy3 x += xs var q : Vector2 = Vector2(x, y) var t : Tile = get_tile(q) if los_blocked and not contact: var o : int = to_orientation(angle(tiles[tiles.size() - 1], t)) ret = compute_contact(from.position, to.position, o, t.position, true) contact = true tiles.append(t) t.blocked = los_blocked los_blocked = los_blocked or t.block_los(from, to, d, distance(p0, q)) return ret func diagonal_los(p0 : Vector2, p1 : Vector2, flat : bool, q13 : bool, tiles : Array) -> Vector2: var dy : int = 1 if p1.y > p0.y else -1 var dx : int = 1 if p1.x > p0.x else -1 var x : int = int(p0.x) var y : int = int(p0.y) var from : Tile = get_tile(p0); var to : Tile = get_tile(p1); var d : float = distance(p0, p1) tiles.append(from); from.blocked = false; var ret : Vector2 = Vector2(-1, -1) var blocked : int = 0 var contact : bool = false var los_blocked : bool = false while (x != p1.x) or (y != p1.y): var idx : int = 4 if flat: y += dy # up left else: x += dx # right var q : Vector2 = Vector2(x, y) var t : Tile = get_tile(q) if t.on_board: tiles.append(t) t.blocked = los_blocked if t.block_los(from, to, d, distance(p0, q)): blocked |= 0x01 else: blocked |= 0x01 idx = 3 if flat: x += dx # up right else: y += dy # up right if not q13: x -= dx q = Vector2(x, y) t = get_tile(q) if t.on_board: tiles.append(t) t.blocked = los_blocked if t.block_los(from, to, d, distance(p0, q)): blocked |= 0x02 else: blocked |= 0x02 idx = 3 if flat: y += dy # up else: x += dx # diagonal q = Vector2(x, y) t = get_tile(q) tiles.append(t) t.blocked = los_blocked || blocked == 0x03 if t.blocked and not contact: var o : int = compute_orientation(dx, dy, flat) if not los_blocked and blocked == 0x03: ret = compute_contact(from.position, to.position, o, t.position, false) else: ret = compute_contact(from.position, to.position, opposite(o), tiles[tiles.size() - idx].position, false) contact = true; los_blocked = t.blocked || t.block_los(from, to, d, distance(p0, q)) return ret func compute_orientation(dx :int, dy :int, flat : bool) -> int: if flat: if v: return Orientation.N if dy == 1 else Orientation.S else: return Orientation.NE if dy == 1 else Orientation.SW if dx == 1: if dy == 1: return Orientation.NE if v else Orientation.E else: return Orientation.SE else: if dy == 1: return Orientation.NW else: return Orientation.SW if v else Orientation.W func compute_contact(from : Vector2, to : Vector2, o : int, t : Vector2, line : bool) -> Vector2: var dx : float = to.x - from.x var dy : float = to.y - from.y var n : float = 9999999999.0 if dx == 0 else (dy / dx) var c : float = from.y - (n * from.x) if v: if o == Orientation.N: return Vector2(t.x, t.y - s) elif o == Orientation.S: return Vector2(t.x, t.y + s) elif o == Orientation.E: var x : float = t.x - dw return Vector2(x, from.y + n * (x - from.x)) elif o == Orientation.W: var x : float = t.x + dw return Vector2(x, from.y + n * (x - from.x)) else: if line: var p : float = m if (o == Orientation.SE or o == Orientation.NW) else -m var k : float = t.y - p * t.x if o == Orientation.SE || o == Orientation.SW: k += s else: k -= s var x : float = (k - c) / (n - p) return Vector2(x, n * x + c) else: var x : float = t.x + (-dw if (o == Orientation.NE or o == Orientation.SE) else dw) var y : float = t.y + (dh if (o == Orientation.SE or o == Orientation.SW) else -dh) return Vector2(x, y) else: if o == Orientation.E: return Vector2(t.x - s, t.y) elif o == Orientation.W: return Vector2(t.x + s, t.y) elif o == Orientation.N: var y : float = t.y - dw return Vector2(from.x + (y - from.y) / n, y) elif o == Orientation.S: var y : float = t.y + dw return Vector2(from.x + (y - from.y) / n, y) else: if line: # o = 1 var p : float = im if (o == Orientation.SE or o == Orientation.NW) else -im var k : float = 0 if o == Orientation.SW or o == Orientation.NW: k = t.y - (p * (t.x + s)) else: k = t.y - (p * (t.x - s)) var x : float = (k - c) / (n - p) return Vector2(x, n * x + c); else: var x : float = t.x + (dh if (o == Orientation.NW || o == Orientation.SW) else -dh) var y : float = t.y + (dw if (o == Orientation.SE || o == Orientation.SW) else -dw) return Vector2(x, y)