From 1153ea4ba0874c6fb0408bcacd815e4e426652a8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Zurcher?= Date: Mon, 20 Jul 2020 12:38:31 +0200 Subject: rename HexBoard into HexMap --- HexBoard.gd | 525 ----------------------------------------------------- HexMap.gd | 525 +++++++++++++++++++++++++++++++++++++++++++++++++++++ godot/HexBoard.png | Bin 1209 -> 0 bytes godot/HexMap.png | Bin 0 -> 1209 bytes project.godot | 4 +- 5 files changed, 527 insertions(+), 527 deletions(-) delete mode 100644 HexBoard.gd create mode 100644 HexMap.gd delete mode 100644 godot/HexBoard.png create mode 100644 godot/HexMap.png diff --git a/HexBoard.gd b/HexBoard.gd deleted file mode 100644 index c883061..0000000 --- a/HexBoard.gd +++ /dev/null @@ -1,525 +0,0 @@ -#warning-ignore-all:integer_division -extends Node - -class_name HexBoard, "res://godot/HexBoard.png" - -enum Orientation { E=1, NE=2, N=4, NW=8, W=16, SW=32, S=64, SE=128 } - -const IMAX : int = 9999999999 -const DEGREE_ADJ : int = 2 - -var bt : Vector2 # bottom corner -var cr : Vector2 # column, row - -var v : bool # hex have a vertical edje - -var s : float # hex side length -var w : float # hex width between 2 parallel sides -var h : float # hex height from the bottom of the middle rectangle to the top of the upper edje -var dw : float # half width -var dh : float # half height (from the top ef tho middle rectangle to the top of the upper edje) -var m : float # dh / dw -var im : float # dw / dh -var tl : int # num of hexes in 2 consecutives rows - -var tile_factory_fct : FuncRef -var angles : Dictionary -var adjacents : Array -var search_count : int -var stack : Array - -func configure(cols : int, rows : int, side : float, v0 : Vector2, vertical : bool) -> void: - v = vertical - s = side - w = s * 1.73205 - dw = w / 2.0 - dh = s / 2.0 - h = s + dh - m = dh / dw - im = dw / dh - if v: - bt = v0 - cr = Vector2(cols, rows) - else: - bt = v0 - cr = Vector2(rows, cols) - tl = (2 * int(cr.x) - 1) - search_count = 0 - angles = {} - if v: - # origin [top-left] East is at 0°, degrees grows clockwise - angles[Orientation.E] = 0 - angles[Orientation.SE] = 60 - angles[Orientation.SW] = 120 - angles[Orientation.W] = 180 - angles[Orientation.NW] = 240 - angles[Orientation.NE] = 300 - else: - angles[Orientation.SE] = 30 - angles[Orientation.S] = 90 - angles[Orientation.SW] = 150 - angles[Orientation.NW] = 210 - angles[Orientation.N] = 270 - angles[Orientation.NE] = 330 - -# the number of Tile -func size() -> int: - return int(cr.y) / 2 * tl + int(cr.y) % 2 * int(cr.x) - -# fetch a Tile given it's col;row coordinates -func get_tile(coords : Vector2) -> Tile: - return tile_factory_fct.call_func(coords, key(coords)) - -# Orientation to degrees -func to_degrees(o : int) -> int: - return angles.get(o, -1) - -# convert the given angle between 2 adjacent Tiles into an Orientation -func to_orientation(a : float) -> int: - for k in angles.keys(): - if angles[k] == a: - return k - return -1 - -# compute the angle between 2 adjacent Tiles -func angle(from : Tile, to : Tile) -> int: - var a : float = rad2deg((to.position - from.position).angle()) + DEGREE_ADJ - if a < 0: a += 360 - return int(a / 10) * 10 - -# return the opposite of a given Orientation -func opposite(o : int) -> int: - if o <= Orientation.NW: return o << 4 - return o >> 4 - -# return the Orientation given to distant Tiles -# Orientation is combined in case of diagonals -func distant_orientation(from : Tile, to : Tile) -> int: - var a : float = rad2deg((to.position - from.position).angle()) - if a < 0: a += 360 - a = int(a * 10) / 10.0 - for k in angles.keys(): - var z : int = angles[k] - if a >= (z + 30 - DEGREE_ADJ) and a <= (z + 30 + DEGREE_ADJ): - # diagonal - var p : int = k >> 1 - if p == 0: p = Orientation.SE - if not angles.has(p): return k | p >> 1 # v : N S and not v : W E - else: return (k | p) - elif (z == 30 and (a < DEGREE_ADJ or a > 360 - DEGREE_ADJ)): - return Orientation.NE | Orientation.SE - elif a >= (z - 30) and a <= (z + 30): - return k - if angles.has(Orientation.E) and a > 330 and a <= 360: - return Orientation.E - return -1 - -# return the opposite of a possibly combined given Orientation -func distant_opposite(o : int) -> int: - var r : int = 0 - for k in angles.keys(): - if (k & o) == k: - r |= opposite(k) - return r - -# return the key of a given col;row coordinate -func key(coords : Vector2) -> int: - if not is_on_map(coords): return -1 - if v: return _key(int(coords.x), int(coords.y)) - else: return _key(int(coords.y), int(coords.x)) - -func _key(x : int, y : int) -> int: - var n : int = y / 2 - var i : int = x - n + n * tl - if (y % 2) != 0: - i += (int(cr.x) - 1) - return i - -# build the 6 adjacent Tiles of a Tile given by it's col;row coordinates -func build_adjacents(coords : Vector2) -> Array: - adjacents.clear() - coords.x += 1 - adjacents.append(get_tile(coords)) - coords.y += 1 - adjacents.append(get_tile(coords)) - coords.x -= 1 - adjacents.append(get_tile(coords)) - coords.x -= 1 - coords.y -= 1 - adjacents.append(get_tile(coords)) - coords.y -= 1 - adjacents.append(get_tile(coords)) - coords.x += 1 - adjacents.append(get_tile(coords)) - return adjacents - -# return true if the Tile is on the map -func is_on_map(coords : Vector2) -> bool: - if v: return _is_on_map(int(coords.x), int(coords.y)) - else: return _is_on_map(int(coords.y), int(coords.x)) - -func _is_on_map(x : int, y : int) -> bool: - if (y < 0) || (y >= int(cr.y)): return false - if (x < ((y + 1) / 2)) || (x >= (int(cr.x) + (y / 2))): return false - return true - -# compute the center of a Tile given by it's col;row coordinates -func center_of(coords : Vector2) -> Vector2: - if v: return Vector2(bt.x + dw + (coords.x * w) - (coords.y * dw), bt.y + dh + (coords.y * h)) - else: return Vector2(bt.y + dh + (coords.x * h), bt.x + dw + (coords.y * w) - (coords.x * dw)) - -# compute the col;row coordinates of a Tile given it's real coordinates -func to_map(r : Vector2) -> Vector2: - if v: return _to_map(r.x, r.y, false) - else: return _to_map(r.y, r.x, true) - -func _to_map(x : float, y : float, swap : bool) -> Vector2: - var col : int = -1 - var row : int = -1 - # compute row - var dy : float = y - bt.y - row = int(dy / h) - if dy < 0: - row -= 1 - # compute col - var dx : float = x - bt.x + (row * dw); - col = int(dx / w) - if dx < 0: - col -= 1 - # upper rectangle or hex body - if dy > ((row * h) + s): - dy -= ((row * h) + s) - dx -= (col * w) - # upper left or right rectangle - if dx < dw: - if dy > (dx * m): - # upper left hex - row += 1 - else: - if dy > ((w - dx) * m): - # upper right hex - row += 1 - col += 1 - if swap: return Vector2(row, col) - else: return Vector2(col, row) - -# compute the distance between 2 Tiles given by their col;row coordinates -func distance(p0 : Vector2, p1 : Vector2, euclidean : bool = true) -> float: - var dx : int = int(p1.x - p0.x) - var dy : int = int(p1.y - p0.y) - if euclidean: - if dx == 0: return abs(dy) - elif dy == 0 || dx == dy: return abs(dx) - var fdx : float = dx - dy / 2; - var fdy : float = dy * 0.86602 - return sqrt((fdx * fdx) + (fdy * fdy)) - else: - dx = int(abs(dx)) - dy = int(abs(dy)) - var dz : float = abs(p1.x - p0.x - p1.y + p0.y) - if dx > dy: - if dx > dz: return float(dx) - else: - if dy > dz: return float(dy) - return dz - -# http://zvold.blogspot.com/2010/01/bresenhams-line-drawing-algorithm-on_26.html -# http://zvold.blogspot.com/2010/02/line-of-sight-on-hexagonal-grid.html -# compute as an Array, the line of sight between 2 Tiles given by their col;row coordinates -# return the point after which the line of sight is blocked -func line_of_sight(p0 : Vector2, p1 : Vector2, tiles : Array) -> Vector2: - tiles.clear() - # orthogonal projection - var ox0 : float = p0.x - (p0.y + 1) / 2 - var ox1 : float = p1.x - (p1.y + 1) / 2 - var dy : int = int(p1.y) - int(p0.y) - var dx : float = ox1 - ox0 - # quadrant I && III - var q13 : bool = (dx >= 0 && dy >= 0) || (dx < 0 && dy < 0) - # is positive - var xs : int = 1 - var ys : int = 1 - if dx < 0: xs = -1 - if dy < 0: ys = -1 - # dx counts half width - dy = int(abs(dy)) - dx = abs(2 * dx) - var dx3 : int = int(3 * dx) - var dy3 : int = 3 * dy - # check for diagonals - if dx == 0 || dx == dy3: - return _diagonal_los(p0, p1, (dx == 0), q13, tiles) - # angle is less than 45° - var flat : bool = dx > dy3 - var x : int = int(p0.x) - var y : int = int(p0.y); - var e : int = int(-2 * dx) - var from : Tile = get_tile(p0) - var to : Tile = get_tile(p1) - var d : float = distance(p0, p1) - tiles.append(from) - from.blocked = false - var ret : Vector2 = Vector2(-1, -1) - var contact : bool = false - var los_blocked : bool = false - while (x != p1.x) or (y != p1.y): - if e > 0: - # quadrant I : up left - e -= (dy3 + dx3) - y += ys - if not q13: x -= xs - else: - e += dy3 - if (e > -dx) or (not flat && (e == -dx)): - # quadrant I : up right - e -= dx3 - y += ys - if q13: x += xs - elif e < -dx3: - # quadrant I : down right - e += dx3 - y -= ys - if not q13: x += xs - else: - # quadrant I : right - e += dy3 - x += xs - var q : Vector2 = Vector2(x, y) - var t : Tile = get_tile(q) - if los_blocked and not contact: - var prev : Tile = tiles[tiles.size() - 1] - var o : int = to_orientation(angle(prev, t)) - ret = _compute_contact(from.position, to.position, prev.position, o) - contact = true - tiles.append(t) - t.blocked = los_blocked - los_blocked = los_blocked or t.block_los(from, to, d, distance(p0, q)) - return ret - -func _diagonal_los(p0 : Vector2, p1 : Vector2, flat : bool, q13 : bool, tiles : Array) -> Vector2: - var dy : int = 1 if p1.y > p0.y else -1 - var dx : int = 1 if p1.x > p0.x else -1 - var x : int = int(p0.x) - var y : int = int(p0.y) - var from : Tile = get_tile(p0); - var to : Tile = get_tile(p1); - var d : float = distance(p0, p1) - tiles.append(from); - from.blocked = false; - var ret : Vector2 = Vector2(-1, -1) - var blocked : int = 0 - var contact : bool = false - var los_blocked : bool = false - while (x != p1.x) or (y != p1.y): - var idx : int = 4 - if flat: y += dy # up left - else: x += dx # right - var q : Vector2 = Vector2(x, y) - var t : Tile = get_tile(q) - if t.on_map: - tiles.append(t) - t.blocked = los_blocked - if t.block_los(from, to, d, distance(p0, q)): - blocked |= 0x01 - else: - blocked |= 0x01 - idx = 3 - - if flat: x += dx # up right - else: - y += dy # up right - if not q13: x -= dx - q = Vector2(x, y) - t = get_tile(q) - if t.on_map: - tiles.append(t) - t.blocked = los_blocked - if t.block_los(from, to, d, distance(p0, q)): - blocked |= 0x02 - else: - blocked |= 0x02 - idx = 3 - - if flat: y += dy # up - else: x += dx # diagonal - q = Vector2(x, y) - t = get_tile(q) - tiles.append(t) - t.blocked = los_blocked || blocked == 0x03 - if t.blocked and not contact: - var o : int = _compute_orientation(dx, dy, flat) - if not los_blocked and blocked == 0x03: - ret = _compute_contact(from.position, to.position, t.position, opposite(o)) - else: - ret = _compute_contact(from.position, to.position, tiles[tiles.size() - idx].position, o) - contact = true; - los_blocked = t.blocked || t.block_los(from, to, d, distance(p0, q)) - return ret - -func _compute_orientation(dx :int, dy :int, flat : bool) -> int: - if flat: - if v: return Orientation.S if dy == 1 else Orientation.N - else: return Orientation.S if dx == 1 else Orientation.N - if dx == 1: - if dy == 1: return Orientation.E - else: return Orientation.E if v else Orientation.N - else: - if dy == 1: return Orientation.W if v else Orientation.S - else: return Orientation.W - -func _compute_contact(from : Vector2, to : Vector2, t : Vector2, o : int) -> Vector2: - var dx : float = to.x - from.x - var dy : float = to.y - from.y - var n : float = float(IMAX) if dx == 0 else (dy / dx) - var c : float = from.y - (n * from.x) - if v: - if o == Orientation.N: return Vector2(t.x, t.y - s) - elif o == Orientation.S: return Vector2(t.x, t.y + s) - elif o == Orientation.E: - var x : float = t.x + dw - return Vector2(x, from.y + n * (x - from.x)) - elif o == Orientation.W: - var x : float = t.x - dw - return Vector2(x, from.y + n * (x - from.x)) - else: - var p : float = -m if (o == Orientation.SE or o == Orientation.NW) else m - var k : float = t.y - p * t.x - if o == Orientation.SE || o == Orientation.SW: k += s - else: k -= s - var x : float = (k - c) / (n - p) - return Vector2(x, n * x + c) - else: - if o == Orientation.E: return Vector2(t.x + s, t.y) - elif o == Orientation.W: return Vector2(t.x - s, t.y) - elif o == Orientation.N: - var y : float = t.y - dw - return Vector2(from.x + (y - from.y) / n, y) - elif o == Orientation.S: - var y : float = t.y + dw - return Vector2(from.x + (y - from.y) / n, y) - else: - var p : float = -im if (o == Orientation.SE or o == Orientation.NW) else +im - var k : float = 0 - if o == Orientation.SW or o == Orientation.NW: k = t.y - (p * (t.x - s)) - else: k = t.y - (p * (t.x + s)) - var x : float = (k - c) / (n - p) - return Vector2(x, n * x + c); - -# compute as an Array, the Tiles that can be reached by a given Piece from a Tile given by it's col;row coordinates -# return the size of the built Array -func possible_moves(piece : Piece, from : Tile, tiles : Array) -> int: - tiles.clear() - if piece.get_mp() <= 0 or not is_on_map(from.coords): return 0 - var road_march_bonus : int = piece.road_march_bonus() - search_count += 1 - from.parent = null - from.acc = piece.get_mp() - from.search_count = search_count - from.road_march = road_march_bonus > 0 - stack.push_back(from) - while(not stack.empty()): - var src : Tile = stack.pop_back() - if (src.acc + (road_march_bonus if src.road_march else 0)) <= 0: continue - # warning-ignore:return_value_discarded - build_adjacents(src.coords) - for dst in adjacents: - if not dst.on_map: continue - var o : int = to_orientation(angle(src, dst)) - var cost : int = piece.move_cost(src, dst, o) - if (cost == -1): continue # impracticable - var r : int = src.acc - cost - var rm : bool = src.road_march and src.has_road(o) - # not enough MP even with RM, maybe first move allowed - if ((r + (road_march_bonus if rm else 0)) < 0 and not (src == from and piece.at_least_one_tile(dst))): continue - if dst.search_count != search_count: - dst.search_count = search_count - dst.acc = r - dst.parent = src - dst.road_march = rm - stack.push_back(dst) - tiles.append(dst) - elif (r > dst.acc or (rm and (r + road_march_bonus > dst.acc + (road_march_bonus if dst.road_march else 0)))): - dst.acc = r - dst.parent = src - dst.road_march = rm - stack.push_back(dst) - return tiles.size() - -# compute as an Array, the shortest path for a given Piece from a Tile to another given by there col;row coordinates -# return the size of the built Array -func shortest_path(piece : Piece, from : Tile, to : Tile, tiles : Array) -> int: - tiles.clear() - if from == to or not is_on_map(from.coords) or not is_on_map(to.coords): return tiles.size() - var road_march_bonus : int = piece.road_march_bonus() - search_count += 1 - from.acc = 0 - from.parent = null - from.search_count = search_count - from.road_march = road_march_bonus > 0 - stack.push_back(from) - while(not stack.empty()): - var src : Tile = stack.pop_back() - if (src == to): break - # warning-ignore:return_value_discarded - build_adjacents(src.coords) - for dst in adjacents: - if not dst.on_map: continue - var o : int = to_orientation(angle(src, dst)) - var cost : int = piece.move_cost(src, dst, o) - if (cost == -1): continue # impracticable - cost += src.acc - var total : float = cost + distance(dst.coords, to.coords) - var rm : bool = src.road_march and src.has_road(o) - if rm: total -= road_march_bonus - var add : bool = false - if dst.search_count != search_count: - dst.search_count = search_count - add = true - elif dst.f > total or (rm and not dst.road_march and abs(dst.f - total) < 0.001): - stack.erase(dst) - add = true - if add: - dst.acc = cost - dst.f = total - dst.road_march = rm - dst.parent = src - var idx : int = IMAX - for k in range(stack.size()): - if stack[k].f <= dst.f: - idx = k - break - if idx == IMAX: stack.push_back(dst) - else: stack.insert(idx, dst) - stack.clear() - if to.search_count == search_count: - var t : Tile = to - while t != from: - tiles.push_front(t) - t = t.parent - tiles.push_front(from) - return tiles.size() - -func range_of_influence(piece : Piece, from : Tile, category : int, tiles : Array) -> int: - tiles.clear() - var max_range : int = piece.max_range_of_fire(category, from) - if not is_on_map(from.coords): return 0 - var tmp : Array = [] - search_count += 1 - from.search_count = search_count - stack.push_back(from) - while(not stack.empty()): - var src : Tile = stack.pop_back() - # warning-ignore:return_value_discarded - build_adjacents(src.coords) - for dst in adjacents: - if not dst.on_map: continue - if dst.search_count == search_count: continue - dst.search_count = search_count - var d : int = int(distance(from.coords, dst.coords, false)) - if d > max_range: continue - if line_of_sight(from.coords, dst.coords, tmp).x != -1: continue - var o : int = distant_orientation(from, dst) - dst.f = piece.volume_of_fire(category, d, from, o, dst, distant_opposite(o)) - stack.push_back(dst) - tiles.append(dst) - return tiles.size() diff --git a/HexMap.gd b/HexMap.gd new file mode 100644 index 0000000..7520972 --- /dev/null +++ b/HexMap.gd @@ -0,0 +1,525 @@ +#warning-ignore-all:integer_division +extends Node + +class_name HexBoard, "res://godot/HexMap.png" + +enum Orientation { E=1, NE=2, N=4, NW=8, W=16, SW=32, S=64, SE=128 } + +const IMAX : int = 9999999999 +const DEGREE_ADJ : int = 2 + +var bt : Vector2 # bottom corner +var cr : Vector2 # column, row + +var v : bool # hex have a vertical edje + +var s : float # hex side length +var w : float # hex width between 2 parallel sides +var h : float # hex height from the bottom of the middle rectangle to the top of the upper edje +var dw : float # half width +var dh : float # half height (from the top ef tho middle rectangle to the top of the upper edje) +var m : float # dh / dw +var im : float # dw / dh +var tl : int # num of hexes in 2 consecutives rows + +var tile_factory_fct : FuncRef +var angles : Dictionary +var adjacents : Array +var search_count : int +var stack : Array + +func configure(cols : int, rows : int, side : float, v0 : Vector2, vertical : bool) -> void: + v = vertical + s = side + w = s * 1.73205 + dw = w / 2.0 + dh = s / 2.0 + h = s + dh + m = dh / dw + im = dw / dh + if v: + bt = v0 + cr = Vector2(cols, rows) + else: + bt = v0 + cr = Vector2(rows, cols) + tl = (2 * int(cr.x) - 1) + search_count = 0 + angles = {} + if v: + # origin [top-left] East is at 0°, degrees grows clockwise + angles[Orientation.E] = 0 + angles[Orientation.SE] = 60 + angles[Orientation.SW] = 120 + angles[Orientation.W] = 180 + angles[Orientation.NW] = 240 + angles[Orientation.NE] = 300 + else: + angles[Orientation.SE] = 30 + angles[Orientation.S] = 90 + angles[Orientation.SW] = 150 + angles[Orientation.NW] = 210 + angles[Orientation.N] = 270 + angles[Orientation.NE] = 330 + +# the number of Tile +func size() -> int: + return int(cr.y) / 2 * tl + int(cr.y) % 2 * int(cr.x) + +# fetch a Tile given it's col;row coordinates +func get_tile(coords : Vector2) -> Tile: + return tile_factory_fct.call_func(coords, key(coords)) + +# Orientation to degrees +func to_degrees(o : int) -> int: + return angles.get(o, -1) + +# convert the given angle between 2 adjacent Tiles into an Orientation +func to_orientation(a : float) -> int: + for k in angles.keys(): + if angles[k] == a: + return k + return -1 + +# compute the angle between 2 adjacent Tiles +func angle(from : Tile, to : Tile) -> int: + var a : float = rad2deg((to.position - from.position).angle()) + DEGREE_ADJ + if a < 0: a += 360 + return int(a / 10) * 10 + +# return the opposite of a given Orientation +func opposite(o : int) -> int: + if o <= Orientation.NW: return o << 4 + return o >> 4 + +# return the Orientation given to distant Tiles +# Orientation is combined in case of diagonals +func distant_orientation(from : Tile, to : Tile) -> int: + var a : float = rad2deg((to.position - from.position).angle()) + if a < 0: a += 360 + a = int(a * 10) / 10.0 + for k in angles.keys(): + var z : int = angles[k] + if a >= (z + 30 - DEGREE_ADJ) and a <= (z + 30 + DEGREE_ADJ): + # diagonal + var p : int = k >> 1 + if p == 0: p = Orientation.SE + if not angles.has(p): return k | p >> 1 # v : N S and not v : W E + else: return (k | p) + elif (z == 30 and (a < DEGREE_ADJ or a > 360 - DEGREE_ADJ)): + return Orientation.NE | Orientation.SE + elif a >= (z - 30) and a <= (z + 30): + return k + if angles.has(Orientation.E) and a > 330 and a <= 360: + return Orientation.E + return -1 + +# return the opposite of a possibly combined given Orientation +func distant_opposite(o : int) -> int: + var r : int = 0 + for k in angles.keys(): + if (k & o) == k: + r |= opposite(k) + return r + +# return the key of a given col;row coordinate +func key(coords : Vector2) -> int: + if not is_on_map(coords): return -1 + if v: return _key(int(coords.x), int(coords.y)) + else: return _key(int(coords.y), int(coords.x)) + +func _key(x : int, y : int) -> int: + var n : int = y / 2 + var i : int = x - n + n * tl + if (y % 2) != 0: + i += (int(cr.x) - 1) + return i + +# build the 6 adjacent Tiles of a Tile given by it's col;row coordinates +func build_adjacents(coords : Vector2) -> Array: + adjacents.clear() + coords.x += 1 + adjacents.append(get_tile(coords)) + coords.y += 1 + adjacents.append(get_tile(coords)) + coords.x -= 1 + adjacents.append(get_tile(coords)) + coords.x -= 1 + coords.y -= 1 + adjacents.append(get_tile(coords)) + coords.y -= 1 + adjacents.append(get_tile(coords)) + coords.x += 1 + adjacents.append(get_tile(coords)) + return adjacents + +# return true if the Tile is on the map +func is_on_map(coords : Vector2) -> bool: + if v: return _is_on_map(int(coords.x), int(coords.y)) + else: return _is_on_map(int(coords.y), int(coords.x)) + +func _is_on_map(x : int, y : int) -> bool: + if (y < 0) || (y >= int(cr.y)): return false + if (x < ((y + 1) / 2)) || (x >= (int(cr.x) + (y / 2))): return false + return true + +# compute the center of a Tile given by it's col;row coordinates +func center_of(coords : Vector2) -> Vector2: + if v: return Vector2(bt.x + dw + (coords.x * w) - (coords.y * dw), bt.y + dh + (coords.y * h)) + else: return Vector2(bt.y + dh + (coords.x * h), bt.x + dw + (coords.y * w) - (coords.x * dw)) + +# compute the col;row coordinates of a Tile given it's real coordinates +func to_map(r : Vector2) -> Vector2: + if v: return _to_map(r.x, r.y, false) + else: return _to_map(r.y, r.x, true) + +func _to_map(x : float, y : float, swap : bool) -> Vector2: + var col : int = -1 + var row : int = -1 + # compute row + var dy : float = y - bt.y + row = int(dy / h) + if dy < 0: + row -= 1 + # compute col + var dx : float = x - bt.x + (row * dw); + col = int(dx / w) + if dx < 0: + col -= 1 + # upper rectangle or hex body + if dy > ((row * h) + s): + dy -= ((row * h) + s) + dx -= (col * w) + # upper left or right rectangle + if dx < dw: + if dy > (dx * m): + # upper left hex + row += 1 + else: + if dy > ((w - dx) * m): + # upper right hex + row += 1 + col += 1 + if swap: return Vector2(row, col) + else: return Vector2(col, row) + +# compute the distance between 2 Tiles given by their col;row coordinates +func distance(p0 : Vector2, p1 : Vector2, euclidean : bool = true) -> float: + var dx : int = int(p1.x - p0.x) + var dy : int = int(p1.y - p0.y) + if euclidean: + if dx == 0: return abs(dy) + elif dy == 0 || dx == dy: return abs(dx) + var fdx : float = dx - dy / 2; + var fdy : float = dy * 0.86602 + return sqrt((fdx * fdx) + (fdy * fdy)) + else: + dx = int(abs(dx)) + dy = int(abs(dy)) + var dz : float = abs(p1.x - p0.x - p1.y + p0.y) + if dx > dy: + if dx > dz: return float(dx) + else: + if dy > dz: return float(dy) + return dz + +# http://zvold.blogspot.com/2010/01/bresenhams-line-drawing-algorithm-on_26.html +# http://zvold.blogspot.com/2010/02/line-of-sight-on-hexagonal-grid.html +# compute as an Array, the line of sight between 2 Tiles given by their col;row coordinates +# return the point after which the line of sight is blocked +func line_of_sight(p0 : Vector2, p1 : Vector2, tiles : Array) -> Vector2: + tiles.clear() + # orthogonal projection + var ox0 : float = p0.x - (p0.y + 1) / 2 + var ox1 : float = p1.x - (p1.y + 1) / 2 + var dy : int = int(p1.y) - int(p0.y) + var dx : float = ox1 - ox0 + # quadrant I && III + var q13 : bool = (dx >= 0 && dy >= 0) || (dx < 0 && dy < 0) + # is positive + var xs : int = 1 + var ys : int = 1 + if dx < 0: xs = -1 + if dy < 0: ys = -1 + # dx counts half width + dy = int(abs(dy)) + dx = abs(2 * dx) + var dx3 : int = int(3 * dx) + var dy3 : int = 3 * dy + # check for diagonals + if dx == 0 || dx == dy3: + return _diagonal_los(p0, p1, (dx == 0), q13, tiles) + # angle is less than 45° + var flat : bool = dx > dy3 + var x : int = int(p0.x) + var y : int = int(p0.y); + var e : int = int(-2 * dx) + var from : Tile = get_tile(p0) + var to : Tile = get_tile(p1) + var d : float = distance(p0, p1) + tiles.append(from) + from.blocked = false + var ret : Vector2 = Vector2(-1, -1) + var contact : bool = false + var los_blocked : bool = false + while (x != p1.x) or (y != p1.y): + if e > 0: + # quadrant I : up left + e -= (dy3 + dx3) + y += ys + if not q13: x -= xs + else: + e += dy3 + if (e > -dx) or (not flat && (e == -dx)): + # quadrant I : up right + e -= dx3 + y += ys + if q13: x += xs + elif e < -dx3: + # quadrant I : down right + e += dx3 + y -= ys + if not q13: x += xs + else: + # quadrant I : right + e += dy3 + x += xs + var q : Vector2 = Vector2(x, y) + var t : Tile = get_tile(q) + if los_blocked and not contact: + var prev : Tile = tiles[tiles.size() - 1] + var o : int = to_orientation(angle(prev, t)) + ret = _compute_contact(from.position, to.position, prev.position, o) + contact = true + tiles.append(t) + t.blocked = los_blocked + los_blocked = los_blocked or t.block_los(from, to, d, distance(p0, q)) + return ret + +func _diagonal_los(p0 : Vector2, p1 : Vector2, flat : bool, q13 : bool, tiles : Array) -> Vector2: + var dy : int = 1 if p1.y > p0.y else -1 + var dx : int = 1 if p1.x > p0.x else -1 + var x : int = int(p0.x) + var y : int = int(p0.y) + var from : Tile = get_tile(p0); + var to : Tile = get_tile(p1); + var d : float = distance(p0, p1) + tiles.append(from); + from.blocked = false; + var ret : Vector2 = Vector2(-1, -1) + var blocked : int = 0 + var contact : bool = false + var los_blocked : bool = false + while (x != p1.x) or (y != p1.y): + var idx : int = 4 + if flat: y += dy # up left + else: x += dx # right + var q : Vector2 = Vector2(x, y) + var t : Tile = get_tile(q) + if t.on_map: + tiles.append(t) + t.blocked = los_blocked + if t.block_los(from, to, d, distance(p0, q)): + blocked |= 0x01 + else: + blocked |= 0x01 + idx = 3 + + if flat: x += dx # up right + else: + y += dy # up right + if not q13: x -= dx + q = Vector2(x, y) + t = get_tile(q) + if t.on_map: + tiles.append(t) + t.blocked = los_blocked + if t.block_los(from, to, d, distance(p0, q)): + blocked |= 0x02 + else: + blocked |= 0x02 + idx = 3 + + if flat: y += dy # up + else: x += dx # diagonal + q = Vector2(x, y) + t = get_tile(q) + tiles.append(t) + t.blocked = los_blocked || blocked == 0x03 + if t.blocked and not contact: + var o : int = _compute_orientation(dx, dy, flat) + if not los_blocked and blocked == 0x03: + ret = _compute_contact(from.position, to.position, t.position, opposite(o)) + else: + ret = _compute_contact(from.position, to.position, tiles[tiles.size() - idx].position, o) + contact = true; + los_blocked = t.blocked || t.block_los(from, to, d, distance(p0, q)) + return ret + +func _compute_orientation(dx :int, dy :int, flat : bool) -> int: + if flat: + if v: return Orientation.S if dy == 1 else Orientation.N + else: return Orientation.S if dx == 1 else Orientation.N + if dx == 1: + if dy == 1: return Orientation.E + else: return Orientation.E if v else Orientation.N + else: + if dy == 1: return Orientation.W if v else Orientation.S + else: return Orientation.W + +func _compute_contact(from : Vector2, to : Vector2, t : Vector2, o : int) -> Vector2: + var dx : float = to.x - from.x + var dy : float = to.y - from.y + var n : float = float(IMAX) if dx == 0 else (dy / dx) + var c : float = from.y - (n * from.x) + if v: + if o == Orientation.N: return Vector2(t.x, t.y - s) + elif o == Orientation.S: return Vector2(t.x, t.y + s) + elif o == Orientation.E: + var x : float = t.x + dw + return Vector2(x, from.y + n * (x - from.x)) + elif o == Orientation.W: + var x : float = t.x - dw + return Vector2(x, from.y + n * (x - from.x)) + else: + var p : float = -m if (o == Orientation.SE or o == Orientation.NW) else m + var k : float = t.y - p * t.x + if o == Orientation.SE || o == Orientation.SW: k += s + else: k -= s + var x : float = (k - c) / (n - p) + return Vector2(x, n * x + c) + else: + if o == Orientation.E: return Vector2(t.x + s, t.y) + elif o == Orientation.W: return Vector2(t.x - s, t.y) + elif o == Orientation.N: + var y : float = t.y - dw + return Vector2(from.x + (y - from.y) / n, y) + elif o == Orientation.S: + var y : float = t.y + dw + return Vector2(from.x + (y - from.y) / n, y) + else: + var p : float = -im if (o == Orientation.SE or o == Orientation.NW) else +im + var k : float = 0 + if o == Orientation.SW or o == Orientation.NW: k = t.y - (p * (t.x - s)) + else: k = t.y - (p * (t.x + s)) + var x : float = (k - c) / (n - p) + return Vector2(x, n * x + c); + +# compute as an Array, the Tiles that can be reached by a given Piece from a Tile given by it's col;row coordinates +# return the size of the built Array +func possible_moves(piece : Piece, from : Tile, tiles : Array) -> int: + tiles.clear() + if piece.get_mp() <= 0 or not is_on_map(from.coords): return 0 + var road_march_bonus : int = piece.road_march_bonus() + search_count += 1 + from.parent = null + from.acc = piece.get_mp() + from.search_count = search_count + from.road_march = road_march_bonus > 0 + stack.push_back(from) + while(not stack.empty()): + var src : Tile = stack.pop_back() + if (src.acc + (road_march_bonus if src.road_march else 0)) <= 0: continue + # warning-ignore:return_value_discarded + build_adjacents(src.coords) + for dst in adjacents: + if not dst.on_map: continue + var o : int = to_orientation(angle(src, dst)) + var cost : int = piece.move_cost(src, dst, o) + if (cost == -1): continue # impracticable + var r : int = src.acc - cost + var rm : bool = src.road_march and src.has_road(o) + # not enough MP even with RM, maybe first move allowed + if ((r + (road_march_bonus if rm else 0)) < 0 and not (src == from and piece.at_least_one_tile(dst))): continue + if dst.search_count != search_count: + dst.search_count = search_count + dst.acc = r + dst.parent = src + dst.road_march = rm + stack.push_back(dst) + tiles.append(dst) + elif (r > dst.acc or (rm and (r + road_march_bonus > dst.acc + (road_march_bonus if dst.road_march else 0)))): + dst.acc = r + dst.parent = src + dst.road_march = rm + stack.push_back(dst) + return tiles.size() + +# compute as an Array, the shortest path for a given Piece from a Tile to another given by there col;row coordinates +# return the size of the built Array +func shortest_path(piece : Piece, from : Tile, to : Tile, tiles : Array) -> int: + tiles.clear() + if from == to or not is_on_map(from.coords) or not is_on_map(to.coords): return tiles.size() + var road_march_bonus : int = piece.road_march_bonus() + search_count += 1 + from.acc = 0 + from.parent = null + from.search_count = search_count + from.road_march = road_march_bonus > 0 + stack.push_back(from) + while(not stack.empty()): + var src : Tile = stack.pop_back() + if (src == to): break + # warning-ignore:return_value_discarded + build_adjacents(src.coords) + for dst in adjacents: + if not dst.on_map: continue + var o : int = to_orientation(angle(src, dst)) + var cost : int = piece.move_cost(src, dst, o) + if (cost == -1): continue # impracticable + cost += src.acc + var total : float = cost + distance(dst.coords, to.coords) + var rm : bool = src.road_march and src.has_road(o) + if rm: total -= road_march_bonus + var add : bool = false + if dst.search_count != search_count: + dst.search_count = search_count + add = true + elif dst.f > total or (rm and not dst.road_march and abs(dst.f - total) < 0.001): + stack.erase(dst) + add = true + if add: + dst.acc = cost + dst.f = total + dst.road_march = rm + dst.parent = src + var idx : int = IMAX + for k in range(stack.size()): + if stack[k].f <= dst.f: + idx = k + break + if idx == IMAX: stack.push_back(dst) + else: stack.insert(idx, dst) + stack.clear() + if to.search_count == search_count: + var t : Tile = to + while t != from: + tiles.push_front(t) + t = t.parent + tiles.push_front(from) + return tiles.size() + +func range_of_influence(piece : Piece, from : Tile, category : int, tiles : Array) -> int: + tiles.clear() + var max_range : int = piece.max_range_of_fire(category, from) + if not is_on_map(from.coords): return 0 + var tmp : Array = [] + search_count += 1 + from.search_count = search_count + stack.push_back(from) + while(not stack.empty()): + var src : Tile = stack.pop_back() + # warning-ignore:return_value_discarded + build_adjacents(src.coords) + for dst in adjacents: + if not dst.on_map: continue + if dst.search_count == search_count: continue + dst.search_count = search_count + var d : int = int(distance(from.coords, dst.coords, false)) + if d > max_range: continue + if line_of_sight(from.coords, dst.coords, tmp).x != -1: continue + var o : int = distant_orientation(from, dst) + dst.f = piece.volume_of_fire(category, d, from, o, dst, distant_opposite(o)) + stack.push_back(dst) + tiles.append(dst) + return tiles.size() diff --git a/godot/HexBoard.png b/godot/HexBoard.png deleted file mode 100644 index add6a52..0000000 Binary files a/godot/HexBoard.png and /dev/null differ diff --git a/godot/HexMap.png b/godot/HexMap.png new file mode 100644 index 0000000..add6a52 Binary files /dev/null and b/godot/HexMap.png differ diff --git a/project.godot b/project.godot index 7f0176a..6cc5ad5 100644 --- a/project.godot +++ b/project.godot @@ -17,7 +17,7 @@ _global_script_classes=[ { "base": "Node", "class": "HexBoard", "language": "GDScript", -"path": "res://HexBoard.gd" +"path": "res://HexMap.gd" }, { "base": "Node2D", "class": "Piece", @@ -36,7 +36,7 @@ _global_script_classes=[ { } ] _global_script_class_icons={ "Hex": "res://godot/Tile.png", -"HexBoard": "res://godot/HexBoard.png", +"HexBoard": "res://godot/HexMap.png", "Piece": "res://godot/Piece.png", "Tile": "res://godot/Tile.png", "Unit": "res://godot/Piece.png" -- cgit v1.1-2-g2b99