/* * An implementation of the SHA-256 hash function, this is endian neutral * so should work just about anywhere. * * Revised Code: Complies to SHA-256 standard now. * * Tom St Denis -- http://tomstdenis.home.dhs.org */ #include "sha256.h" #include /* the K array */ static const u32 K[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Various logical functions */ #define Ch(x,y,z) ((x & y) ^ (~x & z)) /* z ^ (x & (y ^z)) */ #define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z)) /* (x & y) | (z & (x | y)) */ #define S(x, n) (((x)>>((n)&31))|((x)<<(32-((n)&31)))) #define R(x, n) ((x)>>(n)) #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) /* compress 512-bits */ static void sha_compress(struct sha256_ctx *md) { u32 S[8], W[64], t0, t1; int i; /* copy state into S */ for (i = 0; i < 8; i++) S[i] = md->state[i]; /* copy the state into 512-bits into W[0..15] */ for (i = 0; i < 16; i++) W[i] = (((unsigned long) md->buf[(4 * i) + 0]) << 24) | (((unsigned long) md->buf[(4 * i) + 1]) << 16) | (((unsigned long) md->buf[(4 * i) + 2]) << 8) | (((unsigned long) md->buf[(4 * i) + 3])); /* fill W[16..63] */ for (i = 16; i < 64; i++) W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; /* Compress */ for (i = 0; i < 64; i++) { t0 = S[7] + Sigma1(S[4]) + Ch(S[4], S[5], S[6]) + K[i] + W[i]; t1 = Sigma0(S[0]) + Maj(S[0], S[1], S[2]); S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; S[4] = S[3] + t0; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t0 + t1; } /* feedback */ for (i = 0; i < 8; i++) md->state[i] += S[i]; } /* init the SHA state */ void sha256_init(void *ctx) { struct sha256_ctx *md = ctx; md->curlen = md->length = 0; md->state[0] = 0x6A09E667UL; md->state[1] = 0xBB67AE85UL; md->state[2] = 0x3C6EF372UL; md->state[3] = 0xA54FF53AUL; md->state[4] = 0x510E527FUL; md->state[5] = 0x9B05688CUL; md->state[6] = 0x1F83D9ABUL; md->state[7] = 0x5BE0CD19UL; } void sha256_update(void *ctx, const u8 *buf, unsigned int len) { struct sha256_ctx *md = ctx; while (len--) { /* copy byte */ md->buf[md->curlen++] = *buf++; /* is 64 bytes full? */ if (md->curlen == 64) { sha_compress(md); md->length += 512; md->curlen = 0; } } } void sha256_final(void *ctx, u8 *hash) { struct sha256_ctx *md = ctx; int i; /* increase the length of the message */ md->length += md->curlen * 8; /* append the '1' bit */ md->buf[md->curlen++] = 0x80; /* if the length is currenlly above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->curlen >= 56) { for (; md->curlen < 64;) md->buf[md->curlen++] = 0; sha_compress(md); md->curlen = 0; } /* pad upto 56 bytes of zeroes */ for (; md->curlen < 56;) md->buf[md->curlen++] = 0; /* since all messages are under 2^32 bits we mark the top bits zero */ for (i = 56; i < 60; i++) md->buf[i] = 0; /* append length */ for (i = 60; i < 64; i++) md->buf[i] = (md->length >> ((63 - i) * 8)) & 255; sha_compress(md); /* copy output */ for (i = 0; i < 32; i++) hash[i] = (md->state[i >> 2] >> (((3 - i) & 3) << 3)) & 255; }