


Classes and Substitutions

We previously defined the meaning of a function application using a
computation model based on substitution. Now we extend this
model to classes and objects.

Question: How is an instantiation of the class new C(ey, ..., e;)
evaluted?
Answer: The expression arguments e;, ..., e, are evaluated like the

arguments of a normal function. That’s it.

The resulting expresion, say, new C(vy,...,v,), is already a value.



Classes and Substitutions

Now suppose that we have a class definition,

class C(xqy ..oy Xp){ .. def f(y1,...,yn) =b ... }

where
» The formal parameters of the class are x, ..., x;.
» The class defines a method f with formal parameters y, ..., y,.

(The list of function parameters can be absent. For simplicity, we
have omitted the parameter types.)

Question: How is the following expression evaluated?

new C(Vi, vy Vi) F(Wpy ooy Wy)



Classes and Substitutions (2)

Answer: The expression new C(vi, ..., vy).f(wi, ..., w,) is rewritten to:

(Wi /Y15 ooy Wa /Ya] V1 /X1, ooy Vio /X [new C(vq, ...y vy) /this] b

There are three substitutions at work here:

> the substitution of the formal parameters y;, ..., y, of the
function f by the arguments wy, ..., w,,

> the substitution of the formal parameters x,, ..., x, of the class C
by the class arguments v, ..., vy,

» the substitution of the self reference this by the value of the

object new C(vi, ..., vn). Hass € Cxyyerp¥om ) {.

OM Q C 40 ,AM) = By ts ..
P


ppinto
Pencil

ppinto
Pencil


Object Rewriting Examples

new Rational(1, 2).numer



Object Rewriting Examples

new Rational(1, 2).numer

— [1/x,2/y] [] [new Rational(1,2)/this] x



Object Rewriting Examples

new Rational(1, 2).numer
— [1/x,2/y] [] [new Rational(1,2)/this] x
1



Object Rewriting Examples

new Rational(1, 2).numer
— [1/x,2/y] [] [new Rational(1,2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))



Object Rewriting Examples

new Rational(1, 2).numer
— [1/x,2/y] [] [new Rational(1,2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

— [1/x,2/y] [newRational(2,3)/that| [new Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom



Object Rewriting Examples

new Rational(1, 2).numer
— [1/x,2/y] [] [new Rational(1,2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

— [1/x,2/y] [newRational(2,3)/that| [new Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

= new Rational(1, 2).numer * new Rational(2, 3).denom <
new Rational(2, 3).numer * new Rational(1, 2).denom



Object Rewriting Examples

new Rational(1, 2).numer
— [1/x,2/y] [] [new Rational(1,2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

— [1/x,2/y] [newRational(2,3)/that| [new Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

= new Rational(1, 2).numer * new Rational(2, 3).denom <
new Rational(2, 3).numer * new Rational(1, 2).denom

—» 1 % 3<2x%2

—» true



Operators

In principle, the rational numbers defined by Rational are as natural
as integers.

But for the user of these abstractions, there is a noticeable
difference:

» We write x + y, if x and y are integers, but

» We write r.add(s) if r and s are rational numbers.

In Scala, we can eliminate this difference. We procede in two steps.



Step 1: Infix Notation

Any method with a parameter can be used like an infix operator.

It is therefore possible to write

r add s r.add(s)
r less s /* in place of */ r.less(s)
r.max(s)

r max s



Step 2: Relaxed Identifiers

Operators can be used as identifiers.

Thus, an identifier can be:

> Alphanumeric: starting with a letter, followed by a sequence of
letters or numbers

» Symbolic: starting with an operator symbol, followed by other

operator symbols.
» The underscore character ’_’ counts as a letter.

» Alphanumeric identifiers can also end in an underscore,
followed by some operator symbols.

Examples of identifiers:

x1 * +?%& vector_++ counter_=



Operators for Rationals

A more natural definition of class Rational:

class Rational(x: Int, y: Int) {
private def gcd(a: Int, b: Int): Int = if (b == @) a else gcd(b, a % b)
private val g = gcd(x, y)
def numer = x / g
def denom =y / g
def + (r: Rational) =
new Rational(

numer * r.denom + r.numer * denom,

denom * r.denom)
def - (r: Rational)
def * (r: Rational)



Operators for Rationals

.. and rational numbers can be used like Int or Double:

val x = new Rational(1l, 2)
val y = new Rational(1, 3)

(x * x) +(y x y)


ppinto
Pencil


Precedence Rules

The precedence of an operator is determined by its first character.

The following table lists the characters in increasing order of priority
precedence:

(all letters)
I

A
&
<
= !
+ -

*/ %
(all other special characters)



Exercise

Provide a fully parenthized version of

((a ¢ 5)22(c 2 desd == 1)1 )

Every binary operation needs to be put into parentheses, but the
structure of the expression should not change.


ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil




