
Evaluation and Operators



Classes and Substitutions

We previously defined the meaning of a function application using a
computation model based on substitution. Now we extend this
model to classes and objects.
Question: How is an instantiation of the class new C(e1, ..., em)
evaluted?
Answer: The expression arguments e1, ..., em are evaluated like the
arguments of a normal function. That’s it.
The resulting expresion, say, new C(v1, ..., vm), is already a value.



Classes and Substitutions

Now suppose that we have a class definition,

class C(x1, ..., xm){ ... def f(y1, ..., yn) = b ... }

where

▶ The formal parameters of the class are x1, ..., xm.
▶ The class defines a method f with formal parameters y1, ..., yn.

(The list of function parameters can be absent. For simplicity, we
have omitted the parameter types.)
Question: How is the following expression evaluated?

new C(v1, ..., vm).f(w1, ..., wn)



Classes and Substitutions (2)

Answer: The expression new C(v1, ..., vm).f(w1, ..., wn) is rewritten to:

[w1/y1, ..., wn/yn][v1/x1, ..., vm/xm][new C(v1, ..., vm)/this] b

There are three substitutions at work here:

▶ the substitution of the formal parameters y1, ..., yn of the
function f by the arguments w1, ..., wn,

▶ the substitution of the formal parameters x1, ..., xm of the class C

by the class arguments v1, ..., vm,
▶ the substitution of the self reference this by the value of the

object new C(v1, ..., vn).

ppinto
Pencil

ppinto
Pencil



Object Rewriting Examples

new Rational(1, 2).numer



Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1, 2)/this] x



Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1, 2)/this] x

= 1



Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1, 2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))



Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1, 2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

→ [1/x, 2/y] [newRational(2, 3)/that] [new Rational(1, 2)/this]

this.numer * that.denom < that.numer * this.denom



Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1, 2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

→ [1/x, 2/y] [newRational(2, 3)/that] [new Rational(1, 2)/this]

this.numer * that.denom < that.numer * this.denom

= new Rational(1, 2).numer * new Rational(2, 3).denom <

new Rational(2, 3).numer * new Rational(1, 2).denom



Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1, 2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

→ [1/x, 2/y] [newRational(2, 3)/that] [new Rational(1, 2)/this]

this.numer * that.denom < that.numer * this.denom

= new Rational(1, 2).numer * new Rational(2, 3).denom <

new Rational(2, 3).numer * new Rational(1, 2).denom

→→ 1 * 3 < 2 * 2

→→ true



Operators

In principle, the rational numbers defined by Rational are as natural
as integers.
But for the user of these abstractions, there is a noticeable
difference:

▶ We write x + y, if x and y are integers, but
▶ We write r.add(s) if r and s are rational numbers.

In Scala, we can eliminate this difference. We procede in two steps.



Step 1: Infix Notation

Any method with a parameter can be used like an infix operator.
It is therefore possible to write

r add s r.add(s)

r less s /* in place of */ r.less(s)

r max s r.max(s)



Step 2: Relaxed Identifiers

Operators can be used as identifiers.
Thus, an identifier can be:

▶ Alphanumeric: starting with a letter, followed by a sequence of
letters or numbers

▶ Symbolic: starting with an operator symbol, followed by other
operator symbols.

▶ The underscore character ’_’ counts as a letter.
▶ Alphanumeric identifiers can also end in an underscore,

followed by some operator symbols.

Examples of identifiers:

x1 * +?%& vector_++ counter_=



Operators for Rationals

A more natural definition of class Rational:

class Rational(x: Int, y: Int) {

private def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)

private val g = gcd(x, y)

def numer = x / g

def denom = y / g

def + (r: Rational) =

new Rational(

numer * r.denom + r.numer * denom,

denom * r.denom)

def - (r: Rational) = ...

def * (r: Rational) = ...

...

}



Operators for Rationals

… and rational numbers can be used like Int or Double:

val x = new Rational(1, 2)

val y = new Rational(1, 3)

x * x + y * y

ppinto
Pencil



Precedence Rules

The precedence of an operator is determined by its first character.
The following table lists the characters in increasing order of priority
precedence:

(all letters)

|

^

&

< >

= !

:

+ -

* / %

(all other special characters)



Exercise

Provide a fully parenthized version of

a + b ^? c ?^ d less a ==> b | c

Every binary operation needs to be put into parentheses, but the
structure of the expression should not change.

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil




