
Evaluation and Operators



Classes and Substitutions

We previously defined the meaning of a function application using a
computation model based on substitution. Now we extend this
model to classes and objects.
Question: How is an instantiation of the class new C(e1, ..., em)
evaluted?
Answer: The expression arguments e1, ..., em are evaluated like the
arguments of a normal function. That’s it.
The resulting expresion, say, new C(v1, ..., vm), is already a value.



Classes and Substitutions

Now suppose that we have a class definition,

class C(x1, ..., xm){ ... def f(y1, ..., yn) = b ... }

where

▶ The formal parameters of the class are x1, ..., xm.
▶ The class defines a method f with formal parameters y1, ..., yn.

(The list of function parameters can be absent. For simplicity, we
have omitted the parameter types.)
Question: How is the following expression evaluated?

new C(v1, ..., vm).f(w1, ..., wn)



Classes and Substitutions (2)

Answer: The expression new C(v1, ..., vm).f(w1, ..., wn) is rewritten to:

[w1/y1, ..., wn/yn][v1/x1, ..., vm/xm][new C(v1, ..., vm)/this] b

There are three substitutions at work here:

▶ the substitution of the formal parameters y1, ..., yn of the
function f by the arguments w1, ..., wn,

▶ the substitution of the formal parameters x1, ..., xm of the class C

by the class arguments v1, ..., vm,
▶ the substitution of the self reference this by the value of the

object new C(v1, ..., vn).
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Object Rewriting Examples

new Rational(1, 2).numer



Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1, 2)/this] x
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Object Rewriting Examples

new Rational(1, 2).numer
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new Rational(1, 2).less(new Rational(2, 3))



Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1, 2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

→ [1/x, 2/y] [newRational(2, 3)/that] [new Rational(1, 2)/this]

this.numer * that.denom < that.numer * this.denom
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Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1, 2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

→ [1/x, 2/y] [newRational(2, 3)/that] [new Rational(1, 2)/this]

this.numer * that.denom < that.numer * this.denom

= new Rational(1, 2).numer * new Rational(2, 3).denom <

new Rational(2, 3).numer * new Rational(1, 2).denom

→→ 1 * 3 < 2 * 2

→→ true



Operators

In principle, the rational numbers defined by Rational are as natural
as integers.
But for the user of these abstractions, there is a noticeable
difference:

▶ We write x + y, if x and y are integers, but
▶ We write r.add(s) if r and s are rational numbers.

In Scala, we can eliminate this difference. We procede in two steps.



Step 1: Infix Notation

Any method with a parameter can be used like an infix operator.
It is therefore possible to write

r add s r.add(s)

r less s /* in place of */ r.less(s)

r max s r.max(s)



Step 2: Relaxed Identifiers

Operators can be used as identifiers.
Thus, an identifier can be:

▶ Alphanumeric: starting with a letter, followed by a sequence of
letters or numbers

▶ Symbolic: starting with an operator symbol, followed by other
operator symbols.

▶ The underscore character ’_’ counts as a letter.
▶ Alphanumeric identifiers can also end in an underscore,

followed by some operator symbols.

Examples of identifiers:

x1 * +?%& vector_++ counter_=



Operators for Rationals

A more natural definition of class Rational:

class Rational(x: Int, y: Int) {

private def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)

private val g = gcd(x, y)

def numer = x / g

def denom = y / g

def + (r: Rational) =

new Rational(

numer * r.denom + r.numer * denom,

denom * r.denom)

def - (r: Rational) = ...

def * (r: Rational) = ...

...

}



Operators for Rationals

… and rational numbers can be used like Int or Double:

val x = new Rational(1, 2)

val y = new Rational(1, 3)

x * x + y * y

ppinto
Pencil



Precedence Rules

The precedence of an operator is determined by its first character.
The following table lists the characters in increasing order of priority
precedence:

(all letters)

|

^

&

< >

= !

:

+ -

* / %

(all other special characters)



Exercise

Provide a fully parenthized version of

a + b ^? c ?^ d less a ==> b | c

Every binary operation needs to be put into parentheses, but the
structure of the expression should not change.
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