
More Fun with Rationals



Data Abstraction

The previous example has shown that rational numbers aren’t
always represented in their simplest form. (Why?)
One would expect the rational numbers to be simplified:

▶ reduce them to their smallest numerator and denominator by
dividing both with a divisor.

We could implement this in each rational operation, but it would be
easy to forget this division in an operation.
A better alternative consists of simplifying the representation in the
class when the objects are constructed:



Rationals with Data Abstraction

class Rational(x: Int, y: Int) {

private def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)

private val g = gcd(x, y)

def numer = x / g

def denom = y / g

...

}

gcd and g are private members; we can only access them from inside
the Rational class.
In this example, we calculate gcd immediately, so that its value can
be re-used in the calculations of numer and denom.



Rationals with Data Abstraction (2)

It is also possible to call gcd in the code of numer and denom:

class Rational(x: Int, y: Int) {

private def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)

def numer = x / gcd(x, y)

def denom = y / gcd(x, y)

}

This can be advantageous if it is expected that the functions numer

and denom are called infrequently.



Rationals with Data Abstraction (3)

It is equally possible to turn numer and denom into vals, so that they
are computed only once:

class Rational(x: Int, y: Int) {

private def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)

val numer = x / gcd(x, y)

val denom = y / gcd(x, y)

}

This can be advantageous if the functions numer and denom are
called often.



The Client’s View

Clients observe exactly the same behavior in each case.
This ability to choose different implementations of the data without
affecting clients is called data abstraction.
It is a cornerstone of software engineering.



Self Reference

On the inside of a class, the name this represents the object on
which the current method is executed.
Example

Add the functions less and max to the class Rational.

class Rational(x: Int, y: Int) {

...

def less(that: Rational) =

numer * that.denom < that.numer * denom

def max(that: Rational) =

if (this.less(that)) that else this

}



Self Reference (2)

Note that a simple name x, which refers to another member of the
class, is an abbreviation of this.x. Thus, an equivalent way to
formulate less is as follows.

def less(that: Rational) =

this.numer * that.denom < that.numer * this.denom



Preconditions

Let’s say our Rational class requires that the denominator is
positive.
We can enforce this by calling the require function.

class Rational(x: Int, y: Int) {

require(y > 0, ”denominator must be positive”)

...

}

require is a predefined function.
It takes a condition and an optional message string.
If the condition passed to require is false, an
IllegalArgumentException is thrown with the given message string.



Assertions

Besides require, there is also assert.
Assert also takes a condition and an optional message string as
parameters. E.g.

val x = sqrt(y)

assert(x >= 0)

Like require, a failing assert will also throw an exception, but it’s a
different one: AssertionError for assert, IllegalArgumentException
for require.
This reflects a difference in intent

▶ require is used to enforce a precondition on the caller of a
function.

▶ assert is used as to check the code of the function itself.



Constructors

In Scala, a class implicitly introduces a constructor. This one is
called the primary constructor of the class.
The primary constructor

▶ takes the parameters of the class
▶ and executes all statements in the class body (such as the

require a couple of slides back).



Auxiliary Constructors

Scala also allows the declaration of auxiliary constructors.
These are methods named this

ExampleAdding an auxiliary constructor to the class Rational.

class Rational(x: Int, y: Int) {

def this(x: Int) = this(x, 1)

...

}

new Rational(2) > 2/1



Exercise

Modify the Rational class so that rational numbers are kept
unsimplified internally, but the simplification is applied when
numbers are converted to strings.
Do clients observe the same behavior when interacting with the
rational class?

O yes
O no
O yes for small sizes of denominators and nominators

and small numbers of operations.

ppinto
Pencil




