
Functions and Data



Functions and Data

In this section, we’ll learn how functions create and encapsulate
data structures.
Example

Rational Numbers
We want to design a package for doing rational arithmetic.
A rational number x

y is represented by two integers:

▶ its numerator x, and
▶ its denominator y.



Rational Addition

Suppose we want to implement the addition of two rational
numbers.

def addRationalNumerator(n1: Int, d1: Int, n2: Int, d2: Int): Int

def addRationalDenominator(n1: Int, d1: Int, n2: Int, d2: Int): Int

but it would be difficult to manage all these numerators and
denominators.
A better choice is to combine the numerator and denominator of a
rational number in a data structure.



Classes

In Scala, we do this by defining a class:

class Rational(x: Int, y: Int) {

def numer = x

def denom = y

}

This definition introduces two entities:

▶ A new type, named Rational.
▶ A constructor Rational to create elements of this type.

Scala keeps the names of types and values in different namespaces.
So there’s no conflict between the two defintions of Rational.



Objects

We call the elements of a class type objects.
We create an object by prefixing an application of the constructor of
the class with the operator new.
Example

new Rational(1, 2)



Members of an Object

Objects of the class Rational have two members, numer and denom.
We select the members of an object with the infix operator ‘.’ (like
in Java).
Example
val x = new Rational(1, 2) > x: Rational = Rational@2abe0e27
x.numer > 1
x.denom > 2



Rational Arithmetic

We can now define the arithmetic functions that implement the
standard rules.

n1
d1

+ n2
d2

= n1d2+n2d1
d1d2

n1
d1

− n2
d2

= n1d2−n2d1
d1d2

n1
d1

· n2
d2

= n1n2
d1d2

n1
d1
/n2

d2
= n1d2

d1n2

n1
d1

= n2
d2

iff n1d2 = d1n2



Implementing Rational Arithmetic

def addRational(r: Rational, s: Rational): Rational =

new Rational(

r.numer * s.denom + s.numer * r.denom,

r.denom * s.denom)

def makeString(r: Rational) =

r.numer + ”/” + r.denom

makeString(addRational(new Rational(1, 2), new Rational(2, 3))) > 7/6



Methods

One can go further and also package functions operating on a data
abstraction in the data abstraction itself.
Such functions are called methods.
Example

Rational numbers now would have, in addition to the functions
numer and denom, the functions add, sub, mul, div, equal, toString.



Methods for Rationals

Here’s a possible implementation:

class Rational(x: Int, y: Int) {

def numer = x

def denom = y

def add(r: Rational) =

new Rational(numer * r.denom + r.numer * denom,

denom * r.denom)

def mul(r: Rational) = ...

...

override def toString = numer + ”/” + denom

}

Remark: the modifier override declares that toString redefines a
method that already exists (in the class java.lang.Object).



Calling Methods

Here is how one might use the new Rational abstraction:

val x = new Rational(1, 3)

val y = new Rational(5, 7)

val z = new Rational(3, 2)

x.add(y).mul(z)



Exercise

1. In your worksheet, add a method neg to class Rational that is
used like this:

x.neg // evaluates to -x

2. Add a method sub to subtract two rational numbers.
3. With the values of x, y, z as given in the previous slide, what is

the result of

x - y - z

?




