
Scala Syntax Summary

Language Elements Seen So Far:

We have seen language elements to express types, expressions and
definitions.
Below, we give their context-free syntax in Extended Backus-Naur
form (EBNF), where

| denotes an alternative,
[...] an option (0 or 1),
{...} a repetition (0 or more).

Types

Type = SimpleType | FunctionType

FunctionType = SimpleType ‘=>’ Type

| ‘(’ [Types] ‘)’ ‘=>’ Type

SimpleType = Ident

Types = Type {‘,’ Type}

A type can be:
▶ A numeric type: Int, Double (and Byte, Short, Char, Long,

Float),
▶ The Boolean type with the values true and false,
▶ The String type,
▶ A function type, like Int => Int, (Int, Int) => Int.

Later we will see more forms of types.

Expressions

Expr = InfixExpr | FunctionExpr

| if ‘(’ Expr ‘)’ Expr else Expr

InfixExpr = PrefixExpr | InfixExpr Operator InfixExpr

Operator = ident

PrefixExpr = [‘+’ | ‘-’ | ‘!’ | ‘~’] SimpleExpr

SimpleExpr = ident | literal | SimpleExpr ‘.’ ident

| Block

FunctionExpr = Bindings ‘=>‘ Expr

Bindings = ident [‘:’ SimpleType]

| ‘(’ [Binding {‘,’ Binding }] ‘)’

Binding = ident [‘:’ Type]

Block = ‘{’ {Def ‘;’} Expr ‘}’

Expressions (2)

An expression can be:

▶ An identifier such as x, isGoodEnough,
▶ A literal, like 0, 1.0, ”abc”,
▶ A function application, like sqrt(x),
▶ An operator application, like -x, y + x,
▶ A selection, like math.abs,
▶ A conditional expression, like if (x < 0) -x else x,
▶ A block, like { val x = math.abs(y) ; x * 2 }

▶ An anonymous function, like x => x + 1.

Definitions

Def = FunDef | ValDef

FunDef = def ident {‘(’ [Parameters] ‘)’}

[‘:’ Type] ‘=’ Expr

ValDef = val ident [‘:’ Type] ‘=’ Expr

Parameter = ident ‘:’ [‘=>’] Type

Parameters = Parameter {‘,’ Parameter}

A definition can be:
▶ A function definition, like def square(x: Int) = x * x

▶ A value definition, like val y = square(2)

A parameter can be:

▶ A call-by-value parameter, like (x: Int),
▶ A call-by-name parameter, like (y: => Double).

