
Blocks and Lexical Scope

August 31, 2012



Nested functions

It’s good functional programming style to split up a task into many
small functions.
But the names of functions like sqrtIter, improve, and isGoodEnough

matter only for the implementation of sqrt, not for its usage.
Normally we would not like users to access these functions directly.
We can achieve this and at the same time avoid “name-space
pollution” by putting the auxciliary functions inside sqrt.



The sqrt Function, Take 2

def sqrt(x: Double) = {

def sqrtIter(guess: Double, x: Double): Double =

if (isGoodEnough(guess, x)) guess

else sqrtIter(improve(guess, x), x)

def improve(guess: Double, x: Double) =

(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =

abs(square(guess) - x) < 0.001

sqrtIter(1.0, x)

}



Blocks in Scala

▶ A block is delimited by braces { ... }.
{ val x = f(3)

x * x

}

▶ It contains a sequence of definitions or expressions.
▶ The last element of a block is an expression that defines its

value.
▶ This return expression can be preceded by auxiliary definitions.
▶ Blocks are themselves expressions; a block may appear

everywhere an expression can.



Blocks and Visibility

val x = 0

def f(y: Int) = y + 1

val result = {

val x = f(3)

x * x

}

▶ The definitions inside a block are only visible from within the
block.

▶ The definitions inside a block shadow definitions of the same
names outside the block.



Exercise: Scope Rules

Question: What is the value of result in the following program?

val x = 0

def f(y: Int) = y + 1

val result = {

val x = f(3)

x * x

} + x

Possible answers:

O 0

O 16

O 32

O reduction does not terminate

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil



Lexical Scoping

Definitions of outer blocks are visible inside a block unless they are
shadowed.
Therefore, we can simplify sqrt by eliminating redundant
occurrences of the x parameter, which means everywhere the same
thing:



The sqrt Function, Take 3

def sqrt(x: Double) = {

def sqrtIter(guess: Double): Double =

if (isGoodEnough(guess)) guess

else sqrtIter(improve(guess))

def improve(guess: Double) =

(guess + x / guess) / 2

def isGoodEnough(guess: Double) =

abs(square(guess) - x) < 0.001

sqrtIter(1.0)

}



Semicolons

In Scala, semicolons at the end of lines are in most cases optional
You could write

val x = 1;

but most people would omit the semicolon.
On the other hand, if there are more than one statements on a line,
they need to be separated by semicolons:

val y = x + 1; y * y



Semicolons and infix operators

One issue with Scala’s semicolon convention is how to write
expressions that span several lines. For instance

someLongExpression

+ someOtherExpression

would be interpreted as two expressions:

someLongExpression;

+ someOtherExpression



Semicolons and infix operators

There are two ways to overcome this problem.
You could write the multi-line expression in parentheses, because
semicolons are never inserted inside (...):

(someLongExpression

+ someOtherExpression)

Or you could write the operator on the first line, because this tells
the Scala compiler that the expression is not yet finished:

someLongExpression +

someOtherExpression



Summary

You have seen simple elements of functional programing in Scala.

▶ arithmetic and boolean expressions
▶ conditional expressions if-else
▶ functions with recursion
▶ nesting and lexical scope

You have learned the difference between the call-by-name and
call-by-value evaluation strategies.
You have learned a way to reason about program execution: reduce
expressions using the substitution model.
This model will be an important tool for the coming sessions.




