
Functional Programming Principles in Scala

Martin Odersky

September 12, 2012



Programming Paradigms

Paradigm: In science, a paradigm describes distinct concepts or
thought patterns in some scientific discipline.
Main programming paradigms:

▶ imperative programming
▶ functional programming
▶ logic programming

Orthogonal to it:

▶ object-oriented programming



Review: Imperative programming

Imperative programming is about

▶ modifying mutable variables,
▶ using assignments
▶ and control structures such as if-then-else, loops, break,

continue, return.

The most common informal way to understand imperative programs
is as instruction sequences for a Von Neumann computer.



Imperative Programs and Computers

There’s a strong correspondence between
Mutable variables ≈ memory cells
Variable dereferences ≈ load instructions
Variable assignments ≈ store instructions
Control structures ≈ jumps

Problem: Scaling up. How can we avoid conceptualizing programs
word by word?
Reference: John Backus, Can Programming Be Liberated from the
von. Neumann Style?, Turing Award Lecture 1978.



Scaling Up

In the end, pure imperative programming is limited by the “Von
Neumann” bottleneck:

One tends to conceptualize data structures word-by-word.

We need other techniques for defining high-level abstractions such
as collections, polynomials, geometric shapes, strings, documents.
Ideally: Develop theories of collections, shapes, strings, …



What is a Theory?

A theory consists of

▶ one or more data types
▶ operations on these types
▶ laws that describe the relationships between values and

operations

Normally, a theory does not describe mutations!



Theories without Mutation

For instance the theory of polynomials defines the sum of two
polynomials by laws such as:

(a*x + b) + (c*x + d) = (x+c)*x + (b+d)

But it does not define an operator to change a coefficient while
keeping the polynomial the same!



Theories without Mutation

For instance the theory of polynomials defines the sum of two
polynomials by laws such as:

(a*x + b) + (c*x + d) = (x+c)*x + (b+d)

But it does not define an operator to change a coefficient while
keeping the polynomial the same!
Other example:
The theory of strings defines a concatenation operator ++ which is
associative:

(a ++ b) ++ c = a ++ (b ++ c)

But it does not define an operator to change a sequence element
while keeping the sequence the same!



Consequences for Programming

Let’s

▶ concentrate on defining theories for operators,
▶ minimize state changes,
▶ treat operators as functions, often composed of simpler

functions.



Functional Programming

▶ In a restricted sense, functional programming (FP) means
programming without mutable variables, assignments, loops,
and other imperative control structures.

▶ In a wider sense, functional programming means focusing on
the functions.

▶ In particular, functions can be values that are produced,
consumed, and composed.

▶ All this becomes easier in a functional language.



Functional Programming Languages

▶ In a restricted sense, a functional programming language is one
which does not have mutable variables, assignments, or
imperative control structures.

▶ In a wider sense, a functional programming language enables
the construction of elegant programs that focus on functions.

▶ In particular, functions in a FP language are first-class citizens.
This means

▶ they can be defined anywhere, including inside other functions
▶ like any other value, they can be passed as parameters to

functions and returned as results
▶ as for other values, there exists a set operators to compose

functions



Some functional programming languages

In the restricted sense:

▶ Pure Lisp, XSLT, XPath, XQuery, FP
▶ Haskell (without I/O Monad or UnsafePerformIO)

In the wider sense:

▶ Lisp, Scheme, Racket, Clojure
▶ SML, Ocaml, F#
▶ Haskell (full language)
▶ Scala
▶ Smalltalk, Ruby (!)



History of FP languages

1959 Lisp
1975-77 ML, FP, Scheme
1978 Smalltalk
1986 Standard ML
1990 Haskell, Erlang
1999 XSLT
2000 OCaml
2003 Scala, XQuery
2005 F#
2007 Clojure



Recommended Book (1)

Structure and Interpretation of Computer Programs. Harold
Abelson and Gerald J. Sussman. 2nd edition. MIT Press 1996.

A classic. Many parts of the course and quizzes are based on it, but
we change the language from Scheme to Scala.
The full text can be downloaded here.

http://mitpress.mit.edu/sicp/


Recommended Book (2)

Programming in Scala. Martin Odersky, Lex Spoon, and Bill
Venners. 2nd edition. Artima 2010.

Programming in

Scala

artima

Martin Odersky
Lex Spoon

Bill Venners

A comprehensive step-by-step guide

Second Edition

Updated for Scala 2.8

The standard language introduction and reference.



Recommended Book (3)

Scala for the Impatient

A faster paced introduction to Scala for people with a Java
background.
The first part of the book is available for free downlaod

http://typesafe.com/resources/scala-for-the-impatient


Why Functional Programming?

Functional Programming is becoming increasingly popular because
it offers an attractive method for exploiting parallelism for multicore
and cloud computing.
To find out more, see the video of my 2011 Oscon Java keynote
Working Hard to Keep it Simple
(16.30 minutes).
The slides for the video are available separately.

http://www.youtube.com/watch?v=3jg1AheF4n0
http://www.slideshare.net/Odersky/oscon-keynote-working-hard-to-keep-it-simple

