Notifications Lab

Notifications, BroadcastReceivers, AsyncTasks and Networking

Objectives:

This week’s lab is aimed at giving you a better understanding of User Notifications, AsyncTasks,
Broadcast Receivers, and Networking. Upon completion of this lab, you should have a better
understanding of how to create and display different types of User Notifications so that you can
inform a user of an application’s actions. You should also gain familiarity with AsyncTasks and how
they are used to perform slower operations, like downloading data from the Internet, in a non-Ul
Thread. Finally, you will learn how to broadcast and receive Intents.

Exercise A:

This lab is a modified version of the Fragments Lab in which you displayed locally stored Twitter data.
Thus, its interfaces and code are quite similar to those of the previous lab. For grading purposes, we
will only be testing the phone version (not the tablet version).

lgl NotificationsLab i1 NotificationsLab

X Taylor Swift - | love you guys so much.
taylorswift13
[Taylor Swift - Headed to the VMAs. So. Excited.

msrebeccablack [Taylor Swift - RT @markvillaver: Taylor Swift & Jennifer
Lopez - Jenny from the Block - RED Tour - L.A. Staples Center|
Sat 8/24/2013 http://t.co/WUtebAqJk...

ladygaga
Taylor Swift - RT @JLo: @taylorswift13 had so much fun
with you tonight!!! #RedTourLA #jennyfromtheblock
#hairbrushsongs

[Taylor Swift - Sang Jenny From the Block with @JLo tonight
at Staples Center. STILL FANGIRLING OUT ABOUT IT.

[Taylor Swift - RT @JLo: #Red!!! @taylorswift13 @ STAPLES
Center http://t.co/iVbun7jXtg

[Taylor Swift - Our last show in LA is tonight. Can't wait to see
what's in store......

[Taylor Swift - RT @siananderson: List of things | was put on
[this earth to do - this &= @ http://t.co/7x4NjvmyhG

[Taylor Swift - Now I've seen it through, and now | know the
truth... That anything could happen. http://t.co/
B1V8G55MJM

Taylor Swift - RT @elliegoulding: Still blown away by how

incredible the @taylorswift13 show is and how lucky I feel to
have been a part of that last night

) () =!) - !

When the application's MainActivity begins running, it will determine whether any Tweet data has
been downloaded within the last two minutes. If not, it will download Twitter data from the network.
This “downloading” step will retrieve fixed data files from a Coursera server, not a live stream from a
Twitter server. To do this, the application will construct and execute an AsyncTask, which will
download the Twitter data off of the main Thread. As the AsyncTask begins to download the Twitter
data, the application should create a Toast message to alert users that the download is starting. An
example is shown below:

rﬁv NotificationsLab

taylorswift13
msrebeccablack

ladygaga

(Downloading Tweets from Network

o a0 =

(= 3 D

The download process can take a while, during which time the user might even exit the application. If
that happens, the application still should be ready to inform the user that the data has been
downloaded. To do this, when the AsyncTask finishes downloading the tweet data, it will broadcast an
Intent. If the application's MainActivity is not running and in the foreground when this Intent is
broadcast, then the AsyncTask will create a Notification Area Notification and place it in the
Notification area. However, if the MainActivity is running and in the foreground, then the AsyncTask
will not create this Notification.

To do this, the AsyncTask will use the sendOrderedBroadcast() method to broadcast an Intent once
downloading has finished. It will need to pass its own BroadcastReceiver into this call so that it can
receive the result of the broadcast. If a BroadcastReceiver in the MainActivity receives this Intent, then
it will return a specific result code. This way the AsyncTask knows that the MainActivity is in the
foreground. If this result code does not arrive back to the AsyncTask, then the AsyncTask will assume
that the Activity is not active and therefore it will send the User Notification.

If the AsyncTask does send the Notification, an icon will appear in the Notification Area and the user
will need to examine it. When the user pulls down on the Notification drawer, he or she will see an
indication of whether or not the data was successfully downloaded. An example is shown below:

A

Q Google

9 32 TUE, FEBRUARY 11

Download completed
successfully.

Camera

__JOR

o . =

If the user clicks on this Notification's View, the MainActivity should re-open. Again, if the
MainActivity starts more than two minutes after the data was downloaded, then MainActivity should
download the data again. Otherwise, it should not.

If you do not have a stable network connection or have a slow network connection, you can simply
read the data from a local file. To do this, open the DownloaderTask.java file. In there you will find a
boolean variable named HAS _INTERNET_CONNECTION. Change the value of this variable to “false.”

1. Download the application skeleton files and import them into your IDE.
2. Implement the following classes and methods
In MainActivity.java.
a. Modify the private void ensureData() method. Create a BroadcastReceiver that returns
a result code (RESULT_OK) which will inform the AsyncTask that the MainActivity's
active and in the foreground, and therefore, the AsyncTask should not send the user
notification.
b. Register the broadcast receiver in the protected void onResume() method.
c. Unregister the broadcast receiver in the protected void onPause() method.
In DownloadTask.java.
d. Modify the private void notify(boolean success) method to notify that the feed has
been loaded using sendOrderedBroadcast(). You will need to create a
BroadcastReceiver to receive the result of this broadcast. If that result is not
RESULT_OK, this BroadcastRecevier should create a Notification Area Notification. More
information about the sendOrderedBroadcast() method can be found at:
http://developer.android.com/reference/android/content/Context.html

The test cases for this Lab are in the NotificationLabTest project, which is located in the
NotificationsLab/SourceFiles/TestCases/NotificationsLabTest.zip file. You can run the test cases either
all at once, by right clicking the project folder and then selecting Run As>Android Junit Test, or one at
a time, by right clicking on an individual test case class (e.g., X.java) and then continuing as before. The
test classes are Robotium test cases. You will eventually have to run each test case, one at a time,
capture log output, and submit the output to Coursera. These test cases are designed to drive your
app through a set of steps, passing the test case is not a guarantee that your submission will be
accepted. The NewFeedTest test case should output exactly 1 Log message. The
OldFeedNoNotificationTest test case should output exactly 7 Log messages. The
OldFeedWithNotificationTest test case should output exactly 7 Log messages. As you implement
various steps of the Lab, run the test cases every so often to see if you are making progress toward
completion of the Lab.

Warnings:
1. These test cases have been tested on a Galaxy Nexus AVD emulator with API level 18. To limit
configuration problems, you should test you app against a similar AVD.
2. These test cases will start the application at an Activity called, TestFrontEndActivity. This allows
us to modify the age of any already downloaded Tweet data before starting the MainActivity.
The interface for this activity is shown below.

Al & 07:45

'ﬁl TestFrontEndActivity

Make Tweets New

Make Tweets Old

Start Main Activity

o O =

Once you’ve passed all the test cases, submit your log information to the Coursera system for grading.

Tips: Saving a LogCat filter.

1. Inthe LogCat View, press the green "+" sign to "add a new LogCat filter."

2. Adialog box will pop up. Type in the information shown in the screenshot below.
3. Asaved filter called, "NotificationsLab" will appear in the LogCat View.

Logcat Message Filter Settings

Filter logcat messages by the source's tag, pid or minimum log level.
Empty fields will match all messages.

Filter Name: | NotificationsLab
by Log Tag: ' Lab-Notifications
by Log Message:
by PID:
by Application Name:

by Log Level: | verbose

‘/7 Cancel OK

Tips: Running your test cases and capturing your LogCat output for submission.

1. For each test case, clear the LogCat console by clicking on the "Clear Log" Button (the Button with
the red x in the upper right of the LogCat View).

2. Then right click on an individual test case file in the Project Explorer. Run As -> Android JUnit Test.

3. When the test case finishes, if it's not already selected, click on the " NotificationsLab" filter in the
left hand pane of the LogCat View.

4. Select everything within the LogCat View (Ctrl-A or Cmd-A) and press the "Export Selected Items
To Text File" button (floppy disk icon) at the top right of the LogCat View.

5. Submit this file to the Coursera system.

If you get through Exercise A and submitted and passed the tests, and feel that you'd like to do more,
here are some suggested additions. This is optional and ungraded.

Modify your application so that your Tweet data is always fresh. Use an Alarm to download the Tweet
data every two minutes. Note: In a real application, downloading every two minutes would probably
be excessive. You can play with the download frequency. In addition, since our data will never change,
so the whole operation is somewhat pointless, but it give you a chance to create Alarms.

For advanced students only. If you have access to twitter.com, consider downloading live tweets to
your application. You can find out more information about the Twitter APIs at
https://dev.twitter.com/docs

