Lab — User Interface Classes

Objectives:

Familiarize yourself with Android’s User Interface (Ul) classes. Create a simple application that uses a variety of
Ul elements including: Buttons, TextViews and Checkboxes. You will also reinforce the knowledge you've
gained in previous lessons by implementing a larger portion of the application from scratch.

Overview:

In this Lab, you will create a ToDo Manager application. The application creates and manages a list of ToDo
Items (i.e., things that you need “to do.”) You will design this application’s user interface, including its layout
and resource files. You will also implement a bit more of the application’s features than you did in previous
Labs. Do NOT modify any resource IDs or log messages contained in the skeleton layout files as this may break
our test cases.

The main Activity for this application is called ToDoManagerActivity. When the Activity runs, but there are no
previously saved ToDo Items, its initial Ul will look something like this:

B uiLabs
Add New ToDo ltem

Figure 1: Initial View

This Ul contains a single ListView that displays all existing ToDo Items. As shown above, the last row of the
ListView always displays a special View, with the words, “Add New ToDo Item.” This last position within the
ListView is known as the “footer.” You can add a View to the footer by using the ListView’s addFooterView()
method.

When the user clicks on the ListView footer, the application will start a new Activity called AddToDoltemActivi-
ty that allows the user to create and save a new ToDo Item.

B uiLabs

Title

‘:'ra Title

Status

Done: @ Not Done

Priority:

Low @® Medium High

Time and Date
17:52:00
2014-02-13

Choose Date Choose Time

Cancel Reset Submit

Figure 2: Adding a New ToDo Item

ToDo items have at least the following fields. Default values appear in bold:

¢ Title: A user-provided String. The default Title is the empty String ("").

* Status: one of {Done, Not Done}

* Priority: one of {Low, Med, High}

* Time & Date: A deadline for completing this ToDo Item. The default deadline is 7 days from the current
date and time.

This Activity's user interface includes the following buttons:

* Cancel —finish the Activity without creating a new ToDo Item.
* Reset —reset the fields of the ToDo Item to their default values and update the display to reflect this.
* Submit — create a new ToDo Item containing the user-entered / default data fields and return it to To-

DoManagerActivity. When the application returns to ToDoManagerActivity, the new ToDo Item should
appear in the ListView.

For example, if the user creates and submits a new ToDo Item to an empty ToDo list, then once the application
returns to the ToDoManagerActivity, its ListView will contain the new ToDo Item, as shown below.

*ul & 5:53 4 @ 5:54

B uiLabs B uiLabs

Priority:HIGH
Date:2014-01-06 16:53:00

Add New ToDo Item

@ Done: Not Done

Priority:

Low Medium @ High

Time and Date

16:53:00
2014-01-06

Choose Date Choose Time

Cancel Submit

f o) —=!

Figure 3: (a) The user creates a new ToDo Item. (b) After
submitting the new ToDo Item and the application returns to
the main Activity, displaying the new ToDo Item.

Back in the Main Activity, the user will be able to toggle the Done checkbox to indicate that the ToDo
Iltem's status has changed, say from Not Done to Done.

Implementation Notes:

1. Download the application skeleton files, for the UlLabs project, from the assignment page and
import them into your IDE.

2. Implement the project according to the specifications described above. To implement the Lab,
look for comments in the skeleton files containing the String "'//TODO." As with previous Labs,
these comments contain hints as to what you need to do to complete the project. However, be
aware that from here on out these comments will become increasingly less comprehensive,
requiring you to make more decisions about how to implement the whole project.

Testing

The test cases for this Lab are in the UlLabsTest project. You can run the test cases either all at once, by right
clicking the project folder and then selecting Run As>Android Junit Test, or one at a time, by right clicking on an
individual test case class (e.g., TestSubmit.java) and then continuing as before. The test classes are Robotium
test cases. You will eventually have to run each test case, one at a time, capture log output, and submit the
output to Coursera. These test cases are designed to drive your app through a set of steps, passing the test
case is not a guarantee that your submission will be accepted. The TestSubmit test case should output exactly 4
Log messages. The TestReset test case should output exactly 6 Log messages. The TestCancel test case should
output exactly 7 Log messages.

As you implement various steps of the Lab, run the test cases every so often to see if you are making progress
toward completion of the Lab.

Warnings:

1. These test cases have been tested on a Galaxy Nexus AVD emulator with API level 18. To limit
configuration problems, you should test you app against a similar AVD. Also, when testing, make sure
that your device is in Portrait mode when the test cases start running.

2. On startup, these test cases delete all existing ToDoltems.

Once you’ve passed all the test cases, submit your log information to the Coursera system for grading.
Tips: Saving a LogCat filter.

1. Inthe LogCat View, press the green "+" sign to "add a new LogCat filter."
2. Adialog box will pop up. Type in the information shown in the screenshot below.
3. Asaved filter called, "Ul Lab" will appear in the LogCat View.

Logcat Message Filter Settings

Filter logcat messages by the source's tag, pid or minimum log level.
Empty fields will match all messages.

Filter Name: |UlLab

by Log Tag: Lab—UserInterfacd
by Log Message:
by PID:
by Application Name:

by Log Level: | verbose ¢

'/7\ Cancel [ok |

Tips: Running your test cases and capturing your LogCat output for submission.

1. For each test case, clear the LogCat console by clicking on the "Clear Log" Button (the Button with the red x
in the upper right of the LogCat View).

2. Thenright click on an individual test case file in the Project Explorer. Run As -> Android JUnit Test.

3. When the test case finishes, if it's not already selected, click on the " UlLab" filter in the left hand pane of
the LogCat View.

4. Select everything within the LogCat View (Ctrl-A or Cmd-A) and press the "Export Selected Items To Text
File" button (floppy disk icon) at the top right of the LogCat View.
5. Submit this file to the Coursera system.

If you got through Exercise A and submitted and passed the tests, and feel that you'd like to do more, here are
some suggested additions. This is optional and ungraded, but if you do something cool, please consider posting
some screenshots on the forums.

Right now the ToDo manager is quite ugly. Try modifying the layout files to create more attractive and useable
layouts. For example, play with the font size of the text, the amount of padding around the elements, back-
ground colors and more.

Modify your application so that ToDoltems whose status is Not Done are displayed in the Main Activity
with a different colored background than those whose status are Done. If you do this, then when the
user toggles the Done checkbox, the background color should also change as appropriate. You might
also consider changing the background color or adding a warning icon as the ToDo Item’s deadline get
close. Finally, right now, the user can't modify the ToDoltem's priority from the ToDoltem ListView.
Modify this user interface so that it provides a drop down list, allowing users to select a different
Priority.

Modify your application so that if the user long presses a ToDo Item in the Main Activity’s ListView, a
dialog pops up, allowing the user to delete the selected ToDo Item. If you're really feeling adventurous
place the app inside a Tab. Have one Tab display ToDoltems sorted by deadline, and another Tab for
ToDoltems first sorted by priority, and within a particular priority, further sorted by deadline.

