diff options
Diffstat (limited to 'Scala/patmat/src')
-rw-r--r-- | Scala/patmat/src/main/scala/common/package.scala | 40 | ||||
-rw-r--r-- | Scala/patmat/src/main/scala/patmat/Huffman.scala | 206 | ||||
-rw-r--r-- | Scala/patmat/src/test/scala/patmat/HuffmanSuite.scala | 47 |
3 files changed, 293 insertions, 0 deletions
diff --git a/Scala/patmat/src/main/scala/common/package.scala b/Scala/patmat/src/main/scala/common/package.scala new file mode 100644 index 0000000..f1c74c3 --- /dev/null +++ b/Scala/patmat/src/main/scala/common/package.scala @@ -0,0 +1,40 @@ +import java.io.File + +package object common { + + /** An alias for the `Nothing` type. + * Denotes that the type should be filled in. + */ + type ??? = Nothing + + /** An alias for the `Any` type. + * Denotes that the type should be filled in. + */ + type *** = Any + + + /** + * Get a child of a file. For example, + * + * subFile(homeDir, "b", "c") + * + * corresponds to ~/b/c + */ + def subFile(file: File, children: String*) = { + children.foldLeft(file)((file, child) => new File(file, child)) + } + + /** + * Get a resource from the `src/main/resources` directory. Eclipse does not copy + * resources to the output directory, then the class loader cannot find them. + */ + def resourceAsStreamFromSrc(resourcePath: List[String]): Option[java.io.InputStream] = { + val classesDir = new File(getClass.getResource(".").toURI) + val projectDir = classesDir.getParentFile.getParentFile.getParentFile.getParentFile + val resourceFile = subFile(projectDir, ("src" :: "main" :: "resources" :: resourcePath): _*) + if (resourceFile.exists) + Some(new java.io.FileInputStream(resourceFile)) + else + None + } +} diff --git a/Scala/patmat/src/main/scala/patmat/Huffman.scala b/Scala/patmat/src/main/scala/patmat/Huffman.scala new file mode 100644 index 0000000..a40c212 --- /dev/null +++ b/Scala/patmat/src/main/scala/patmat/Huffman.scala @@ -0,0 +1,206 @@ +package patmat + +import common._ + +/** + * Assignment 4: Huffman coding + * + */ +object Huffman { + + /** + * A huffman code is represented by a binary tree. + * + * Every `Leaf` node of the tree represents one character of the alphabet that the tree can encode. + * The weight of a `Leaf` is the frequency of appearance of the character. + * + * The branches of the huffman tree, the `Fork` nodes, represent a set containing all the characters + * present in the leaves below it. The weight of a `Fork` node is the sum of the weights of these + * leaves. + */ + abstract class CodeTree + case class Fork(left: CodeTree, right: CodeTree, chars: List[Char], weight: Int) extends CodeTree + case class Leaf(char: Char, weight: Int) extends CodeTree + + + + // Part 1: Basics + + def weight(tree: CodeTree): Int = ??? // tree match ... + + def chars(tree: CodeTree): List[Char] = ??? // tree match ... + + def makeCodeTree(left: CodeTree, right: CodeTree) = + Fork(left, right, chars(left) ::: chars(right), weight(left) + weight(right)) + + + + // Part 2: Generating Huffman trees + + /** + * In this assignment, we are working with lists of characters. This function allows + * you to easily create a character list from a given string. + */ + def string2Chars(str: String): List[Char] = str.toList + + /** + * This function computes for each unique character in the list `chars` the number of + * times it occurs. For example, the invocation + * + * times(List('a', 'b', 'a')) + * + * should return the following (the order of the resulting list is not important): + * + * List(('a', 2), ('b', 1)) + * + * The type `List[(Char, Int)]` denotes a list of pairs, where each pair consists of a + * character and an integer. Pairs can be constructed easily using parentheses: + * + * val pair: (Char, Int) = ('c', 1) + * + * In order to access the two elements of a pair, you can use the accessors `_1` and `_2`: + * + * val theChar = pair._1 + * val theInt = pair._2 + * + * Another way to deconstruct a pair is using pattern matching: + * + * pair match { + * case (theChar, theInt) => + * println("character is: "+ theChar) + * println("integer is : "+ theInt) + * } + */ + def times(chars: List[Char]): List[(Char, Int)] = ??? + + /** + * Returns a list of `Leaf` nodes for a given frequency table `freqs`. + * + * The returned list should be ordered by ascending weights (i.e. the + * head of the list should have the smallest weight), where the weight + * of a leaf is the frequency of the character. + */ + def makeOrderedLeafList(freqs: List[(Char, Int)]): List[Leaf] = ??? + + /** + * Checks whether the list `trees` contains only one single code tree. + */ + def singleton(trees: List[CodeTree]): Boolean = ??? + + /** + * The parameter `trees` of this function is a list of code trees ordered + * by ascending weights. + * + * This function takes the first two elements of the list `trees` and combines + * them into a single `Fork` node. This node is then added back into the + * remaining elements of `trees` at a position such that the ordering by weights + * is preserved. + * + * If `trees` is a list of less than two elements, that list should be returned + * unchanged. + */ + def combine(trees: List[CodeTree]): List[CodeTree] = ??? + + /** + * This function will be called in the following way: + * + * until(singleton, combine)(trees) + * + * where `trees` is of type `List[CodeTree]`, `singleton` and `combine` refer to + * the two functions defined above. + * + * In such an invocation, `until` should call the two functions until the list of + * code trees contains only one single tree, and then return that singleton list. + * + * Hint: before writing the implementation, + * - start by defining the parameter types such that the above example invocation + * is valid. The parameter types of `until` should match the argument types of + * the example invocation. Also define the return type of the `until` function. + * - try to find sensible parameter names for `xxx`, `yyy` and `zzz`. + */ + def until(xxx: ???, yyy: ???)(zzz: ???): ??? = ??? + + /** + * This function creates a code tree which is optimal to encode the text `chars`. + * + * The parameter `chars` is an arbitrary text. This function extracts the character + * frequencies from that text and creates a code tree based on them. + */ + def createCodeTree(chars: List[Char]): CodeTree = ??? + + + + // Part 3: Decoding + + type Bit = Int + + /** + * This function decodes the bit sequence `bits` using the code tree `tree` and returns + * the resulting list of characters. + */ + def decode(tree: CodeTree, bits: List[Bit]): List[Char] = ??? + + /** + * A Huffman coding tree for the French language. + * Generated from the data given at + * http://fr.wikipedia.org/wiki/Fr%C3%A9quence_d%27apparition_des_lettres_en_fran%C3%A7ais + */ + val frenchCode: CodeTree = Fork(Fork(Fork(Leaf('s',121895),Fork(Leaf('d',56269),Fork(Fork(Fork(Leaf('x',5928),Leaf('j',8351),List('x','j'),14279),Leaf('f',16351),List('x','j','f'),30630),Fork(Fork(Fork(Fork(Leaf('z',2093),Fork(Leaf('k',745),Leaf('w',1747),List('k','w'),2492),List('z','k','w'),4585),Leaf('y',4725),List('z','k','w','y'),9310),Leaf('h',11298),List('z','k','w','y','h'),20608),Leaf('q',20889),List('z','k','w','y','h','q'),41497),List('x','j','f','z','k','w','y','h','q'),72127),List('d','x','j','f','z','k','w','y','h','q'),128396),List('s','d','x','j','f','z','k','w','y','h','q'),250291),Fork(Fork(Leaf('o',82762),Leaf('l',83668),List('o','l'),166430),Fork(Fork(Leaf('m',45521),Leaf('p',46335),List('m','p'),91856),Leaf('u',96785),List('m','p','u'),188641),List('o','l','m','p','u'),355071),List('s','d','x','j','f','z','k','w','y','h','q','o','l','m','p','u'),605362),Fork(Fork(Fork(Leaf('r',100500),Fork(Leaf('c',50003),Fork(Leaf('v',24975),Fork(Leaf('g',13288),Leaf('b',13822),List('g','b'),27110),List('v','g','b'),52085),List('c','v','g','b'),102088),List('r','c','v','g','b'),202588),Fork(Leaf('n',108812),Leaf('t',111103),List('n','t'),219915),List('r','c','v','g','b','n','t'),422503),Fork(Leaf('e',225947),Fork(Leaf('i',115465),Leaf('a',117110),List('i','a'),232575),List('e','i','a'),458522),List('r','c','v','g','b','n','t','e','i','a'),881025),List('s','d','x','j','f','z','k','w','y','h','q','o','l','m','p','u','r','c','v','g','b','n','t','e','i','a'),1486387) + + /** + * What does the secret message say? Can you decode it? + * For the decoding use the `frenchCode' Huffman tree defined above. + */ + val secret: List[Bit] = List(0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,1,1,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,1) + + /** + * Write a function that returns the decoded secret + */ + def decodedSecret: List[Char] = ??? + + + + // Part 4a: Encoding using Huffman tree + + /** + * This function encodes `text` using the code tree `tree` + * into a sequence of bits. + */ + def encode(tree: CodeTree)(text: List[Char]): List[Bit] = ??? + + + // Part 4b: Encoding using code table + + type CodeTable = List[(Char, List[Bit])] + + /** + * This function returns the bit sequence that represents the character `char` in + * the code table `table`. + */ + def codeBits(table: CodeTable)(char: Char): List[Bit] = ??? + + /** + * Given a code tree, create a code table which contains, for every character in the + * code tree, the sequence of bits representing that character. + * + * Hint: think of a recursive solution: every sub-tree of the code tree `tree` is itself + * a valid code tree that can be represented as a code table. Using the code tables of the + * sub-trees, think of how to build the code table for the entire tree. + */ + def convert(tree: CodeTree): CodeTable = ??? + + /** + * This function takes two code tables and merges them into one. Depending on how you + * use it in the `convert` method above, this merge method might also do some transformations + * on the two parameter code tables. + */ + def mergeCodeTables(a: CodeTable, b: CodeTable): CodeTable = ??? + + /** + * This function encodes `text` according to the code tree `tree`. + * + * To speed up the encoding process, it first converts the code tree to a code table + * and then uses it to perform the actual encoding. + */ + def quickEncode(tree: CodeTree)(text: List[Char]): List[Bit] = ??? +} diff --git a/Scala/patmat/src/test/scala/patmat/HuffmanSuite.scala b/Scala/patmat/src/test/scala/patmat/HuffmanSuite.scala new file mode 100644 index 0000000..3881871 --- /dev/null +++ b/Scala/patmat/src/test/scala/patmat/HuffmanSuite.scala @@ -0,0 +1,47 @@ +package patmat + +import org.scalatest.FunSuite + +import org.junit.runner.RunWith +import org.scalatest.junit.JUnitRunner + +import patmat.Huffman._ + +@RunWith(classOf[JUnitRunner]) +class HuffmanSuite extends FunSuite { + trait TestTrees { + val t1 = Fork(Leaf('a',2), Leaf('b',3), List('a','b'), 5) + val t2 = Fork(Fork(Leaf('a',2), Leaf('b',3), List('a','b'), 5), Leaf('d',4), List('a','b','d'), 9) + } + + test("weight of a larger tree") { + new TestTrees { + assert(weight(t1) === 5) + } + } + + test("chars of a larger tree") { + new TestTrees { + assert(chars(t2) === List('a','b','d')) + } + } + + test("string2chars(\"hello, world\")") { + assert(string2Chars("hello, world") === List('h', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd')) + } + + test("makeOrderedLeafList for some frequency table") { + assert(makeOrderedLeafList(List(('t', 2), ('e', 1), ('x', 3))) === List(Leaf('e',1), Leaf('t',2), Leaf('x',3))) + } + + test("combine of some leaf list") { + val leaflist = List(Leaf('e', 1), Leaf('t', 2), Leaf('x', 4)) + assert(combine(leaflist) === List(Fork(Leaf('e',1),Leaf('t',2),List('e', 't'),3), Leaf('x',4))) + } + + test("decode and encode a very short text should be identity") { + new TestTrees { + assert(decode(t1, encode(t1)("ab".toList)) === "ab".toList) + } + } +} |